• Title/Summary/Keyword: Series resonant converter

Search Result 239, Processing Time 0.032 seconds

A Study on the Gain Characteristics of Multi-output LLC Series Resonant Converter (다중 출력 LLC 직렬 공진 컨버터의 이득 특성 연구)

  • Lee, Jae-Sam;Park, Jun-Ho;Huh, Dong-Young;Kang, Seong-In;Kim, Joo-Hoon;Kim, Eun-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.177-187
    • /
    • 2009
  • This paper describes the gain characteristics of Multi-output LLC series resonant converter by using the new analytical method. Specially, using the Math-CAD simulated result, this paper analyzes an influence from the secondary leakage inductance of transformer. The theoretical results are verified through an experimental prototype of the 430W 3-output LLC resonant converter for 46inch PDP power module.

An improved high efficiency resonant converter with low coupling transformer (낮은 커플링 변압기를 갖는 개선된 고효율 공진 컨버터)

  • Kong Y. S.;Kim E. S.;Yang S. C.;Park J. Y.;Kim J. M.;Kang D. H;Cho J. G.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1166-1168
    • /
    • 2004
  • The high frequency series resonant converter has been widely used for the non-contact power supply system with the large air gap and the increased leakage inductance of the non-contact transformer. However. the high frequency series resonant converter has the disadvantages of high voltage gain characteristics in the overall load range due to the large air gap and the circulating magnetizing current. In this paper, unit voltage gain is revealed in the proposed three-level series-parallel resonant converter. The results are verified on the simulation results and the 5kW experimental prototype.

  • PDF

Study of ZVS-PWM Series Resonant Converter with Active-Clamp Technique (액티브 클램프 기법을 이용한 영전압 스위칭 직렬 공진형 컨버터에 관한 연구)

  • Jeon, Hee-Cheol;Kim, Yong;Jung, Kye-Cheon;Kim, Pil-Soo;Lee, Eun-Young
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2674-2677
    • /
    • 1999
  • Resonant converters have several salient features such as high efficiency and low noise. Therefore, ZVS-PWM controlled series resonant converter with active-clamp technique is presented. The combination of an active-clamp technique and resonant circuit makes it possible to control the output voltage of the resonant converter with PWM. This new resonant converter was implemented and has achieved a good controllability. In this paper, the normal load characteristics and abnormal voltage increase in the case of the light load are analyzed. As a result, it is clarified that the stray capacitance of the transformer is a cause of the abnormal voltage increase. Then, it is confirmed that the abnormal voltage increase is suppressed by decreasing the duty ratio. ZVS condition is analyzed. The maximum efficiency of 89% is obtained for the output of 10V and 5A.

  • PDF

Single-Power-Conversion Series-Resonant AC-DC Converter with High Efficiency (고효율을 갖는 단일 전력변환 직렬 공진형 AC-DC 컨버터)

  • Jeong, Seo-Gwang;Cha, Woo-Jun;Lee, Sung-Ho;Kwon, Bong-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.3
    • /
    • pp.224-230
    • /
    • 2016
  • In this study, a single-power-conversion series-resonant ac-dc converter with high efficiency and high power factor is proposed. The proposed ac-dc converter consists of single-ended primary-inductor converter with an active-clamp circuit and a voltage doubler with series-resonant circuit. The active-clamp circuit clamps the surge voltage and provides zero-voltage switching of the main switch. The series-resonant circuit consists of leakage inductance $L_{lk}$ of the transformer and resonant capacitors $ C_{r1}$ and $ C_{r2}$. This circuit also provides zero-current switching of output diodes $D_1$ and $D_2$. Thus, the switching loss of switches and reverse-recovery loss of output diodes are considerably reduced. The proposed ac-dc converter also achieves high power factor using the proposed control algorithm without the addition of a power factor correction circuit and a dc-link electrolytic capacitor. A detailed theoretical analysis and the experimental results for a 1kW prototype are discussed.

Non-Contact Power Supply Using the Series-Parallel Resonant Converter (직ㆍ병렬 공진형 컨버터를 이용한 비접촉전원)

  • Kong Young-Su;Kim Eun-Soo;Yang Seung-Chul;Kim Jong-Mu;Shin Byung-Chul
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.405-412
    • /
    • 2004
  • In this paper, Non-contact power supply(NCPS) with the long primary cable longer than 20m and the large air-gap between the primary and secondary of Non-Contacting Transformer(NCT) is presented. The NCT has a large leakage inductance bigger than its magnetizing inductance because it has low coupling, and it is not efficient for NCPS to transfer the primary energy to the secondary one. In order to improve this problem, the voltage-gain characteristics of the series resonant converter, the parallel resonant converter, and the series-parallel resonant converter are analyzed respectively. In addition, the experimental results of 10kW prototype the series-parallel resonant converter is presented.

Phase Controlled Series Resonant Converter System for Control Power Supply in a Base Station (기지국용 제어전원으로 사용가능한 위상제어 직렬공진형 컨버터 시스템)

  • Ji, Jun-Keun;Lim, Young-Ha
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.181-183
    • /
    • 2003
  • In this paper, phase controlled series resonant converter(PCSRC) system for control power supply in base station is suggested. PCSRC system is robust to load variations because it is POSR(parallel output series resonant) type. And it provides stable output voltage by changing phase angle of MOSFET switches to input voltage variations. Firstly, operation analysis about suggested series resonant converter system was carried. Then Computer simulations using PSIM were carried to prove characteristics of suggested system.

  • PDF

A Contact-less Power Supply for Photovoltaic Power Generation System (태양광 발전 시스템을 위한 무접점 전원장치)

  • Lee, Hyun-Kwan;Kong, Young-Su;Kim, Yoon-Ho;Lee, Gi-Sik;Kang, Sung-In;Chung, Bong-Geun;Kim, Eun-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.216-223
    • /
    • 2006
  • The high efficiency full-bridge LLC resonant converter using a contact-less transformer Is proposed for the photovoltaic power generation system. For the series resonance with a series capacitor, the LLC resonant converter utilizes the leakage inductance and magnetizing inductance of a contact-less transformer Unlike the conventional series resonant converter operated to the continuous resonant current at above resonance frequency, the proposed converter operates to the discontinuous resonant current at the narrow frequency control range below resonance frequency. Due to the discontinuous mode resonant current, the proposed converter can be achieved the zero voltage switching (ZVS) in the primary switches and the zero current switching (ZCS) in the secondary rectification diodes without my auxiliary circuit. In this paper, the experimental results of the proposed full-bridge LLC resonant converter using a contact-less transformer are verified on the simulation based on the theoretical analysis and the 150W experimental prototype.

Design of Optimal Resonant Frequency for Series-Loaded Resonant DC-DC Converter in EVs On-Board Battery Charger Application (전기자동차 탑재형 충전기용 부하직렬공진형 컨버터의 최적 공진주파수 설계)

  • Oh, Chang-Yeol;Kim, Jong-Soo;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.77-84
    • /
    • 2012
  • This paper describes the process of optimal resonant frequency design with full-bridge series-loaded resonant dc-dc converter in a high efficiency 3.3 kW on-board battery charger application for Electric Vehicles and Plug-in Hybrid Electric Vehicles. The optimal range of resonant frequency and switching frequency used for ZVS are determined by considering trade-off between loss of switching devices and resonant network with size of passive/magnetic devices. In addition, it is defined charging region of battery, the load of on-board charger, as the area of load by deliberating the characteristic of resonant. It is verified the designed frequency band by reflecting the defined area on resonant frequency.

Analysis and Design of Half-Bridge Series Resonant Converter for Non-Contact Battery Charger (무접점 베터리 충전 장치용 Half-Bridge 직렬 공진 컨버터 분석 및 설계)

  • Kim, Chang-Gyun;You, Jung-Sik;Park, Jong-Hu;Cho, Bo-Hyung;Seo, Dong-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2508-2511
    • /
    • 1999
  • A non-contact battery charger which transfers energy using magnetic field without any electrical contacts is designed using half-bridge series resonant converter. This converter utilizes series resonance to reduce the undesirable effect of large leakage inductance of the non-contact transformer and ZVS operation can reduce switching losses. In this paper. analysis and design procedure of half-bridge series resonant converter with non-contact transformer is presented. Input voltage is 85VAC ${\sim}$ 270VAC, output voltage and current is 4.1V and 800mA, respectively. Furthermore, a method for calculating the secondary current of the transformer to control battery charging current in constant current charging mode which is required for litium-ion battery is proposed and the performance is verified from experiments.

  • PDF

Analysis of No-load Characteristics in LLC Resonant Converter (LLC 공진형 컨버터의 무부하 특성 분석)

  • Kwon, Min-Jun;Lee, Woo-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.3
    • /
    • pp.398-405
    • /
    • 2018
  • LLC resonant converter is popular with industrial fields because it can be achieved high efficiency by zero voltage switching (ZVS). As interest grew, analysis of characteristics in LLC resonant converter have been actively studied. Generally, characteristic of LLC resonant converter is analyzed based on first harmonic approximation(FHA). The FHA analysis represents the characteristics of LLC resonant converter by obtaining the series resonant operation. FHA analysis of LLC resonant converter in load condition is correct. but it is not correct in no load condition. This paper proposed analysis of characteristics considering the parasitic components to overcome the limitation of FHA and analyze no-load characteristics. The validity of the proposed method has been investigated by simulation and experimental results.