• 제목/요약/키워드: Series capacitor

검색결과 427건 처리시간 0.031초

Design Methodology of a Three-Phase Dual Active Bridge Converter for Low Voltage Direct Current Applications

  • Lee, Won-Bin;Choi, Hyun-Jun;Cho, Young-Pyo;Ryu, Myung-Hyo;Jung, Jee-Hoon
    • Journal of Power Electronics
    • /
    • 제18권2호
    • /
    • pp.482-491
    • /
    • 2018
  • The practical design methodology of a three-phase dual active bridge (3ph-DAB) converter applied to low voltage direct current (LVDC) applications is proposed by using a mathematical model based on the steady-state operation. An analysis of the small-signal model (SSM) is important for the design of a proper controller to improve the stability and dynamics of the converter. The proposed lead-lag controller for the 3ph-DAB converter is designed with a simplified SSM analysis including an equivalent series resistor (ESR) for the output capacitor. The proposed controller can compensate the effects of the ESR zero of the output capacitor in the control-to-output voltage transfer function that can cause high-frequency noises. In addition, the performance of the power converter can be improved by using a controller designed by a SSM analysis without additional cost. The accuracy of the simplified SSM including the ESR zero of the output capacitor is verified by simulation software (PSIM). The design methodology of the 3ph-DAB converter and the performance of the proposed controller are verified by experimental results obtained with a 5-kW prototype 3ph-DAB converter.

멤리스터의 전기적 특성 분석을 위한 PSPICE 회로 해석 (PSPICE circuit simulation for electrical characteristic analysis of the memristor)

  • 김부강;박호종;박용수;송한정
    • 한국산학기술학회논문지
    • /
    • 제15권2호
    • /
    • pp.1051-1058
    • /
    • 2014
  • 본 논문에서는 PSPICE 프로그램을 이용하여 멤리스터 소자의 전기적 특성을 해석하였다. 멤리스터의 PSPCE 회로해석을 위한 모델링을 제안하고, 멤리스터의 전류-전압 특성을 분석하였고, 멤리스터의 입력전압에 따른 비선형 저항의 변화를 DC해석과 과도해석을 통하여 확인하였다. 또한, 멤리스터 저항의 직렬과 병렬연결에 따른 특성변화를 보았다. 한편, 멤리스터와 커패시터로 이루어진 M-C 회로를 구성하여 충전과 방전특성의 변화를 종래의 R-C회로와 비교분석하였다. 250 Hz의 구형파 입력신호 인가 시, 멤리스터-커패시터 회로의 경우에, 상승시간(Tr) 0.58 ms, 하강 시간 (Tf) 1.6 ms, 지연시간 0.6ms를 나타내었다.

MLCC 출력 콘덴서를 이용한 LED 구동드라이브 설계 (Design of LED Drive using MLCC Output Capacitor)

  • 한만승;이상훈;조수억;박성준
    • 전력전자학회논문지
    • /
    • 제16권5호
    • /
    • pp.448-456
    • /
    • 2011
  • 최근 디지털 광원으로서 각광받고 있는 고출력 LED(Light Emitting Diode)는 저소비전력과 장수명 그리고 점 소등 속도도 빨라서 고출력 LED의 효율을 향상시켜 일반 조명용으로 사용하려는 노력이 두드러지고 있다. 본 논문에서는 온도변화에 따른 전압 변동분만을 출력 콘덴서에 저장함으로서 출력 측에 사용하던 전해 콘덴서를 전압용량이 작고 수명이 긴 MLCC(Multi-Layer Ceramic Capacitor) 사용이 가능한 LED 구동 드라이브를 제안하고자 한다. 제안된 LED 구동 드라이브는 기존의 부스트 DC/DC 컨버터의 기본 토폴로지에서 출력 콘덴서를 입력 전원과 직렬로 연결하여 LED 광원의 온도변화에 따른 전압 변동분만을 출력 콘덴서에 저장함으로서 출력 콘덴서로 기존수명이 낮은 전해 콘덴서 대신 전력 손실이 적고 수명이 긴 MLCC 사용이 가능하게 된다.

고효율을 갖는 단일 전력변환 직렬 공진형 AC-DC 컨버터 (Single-Power-Conversion Series-Resonant AC-DC Converter with High Efficiency)

  • 정서광;차우준;이성호;권봉환
    • 전력전자학회논문지
    • /
    • 제21권3호
    • /
    • pp.224-230
    • /
    • 2016
  • In this study, a single-power-conversion series-resonant ac-dc converter with high efficiency and high power factor is proposed. The proposed ac-dc converter consists of single-ended primary-inductor converter with an active-clamp circuit and a voltage doubler with series-resonant circuit. The active-clamp circuit clamps the surge voltage and provides zero-voltage switching of the main switch. The series-resonant circuit consists of leakage inductance $L_{lk}$ of the transformer and resonant capacitors $ C_{r1}$ and $ C_{r2}$. This circuit also provides zero-current switching of output diodes $D_1$ and $D_2$. Thus, the switching loss of switches and reverse-recovery loss of output diodes are considerably reduced. The proposed ac-dc converter also achieves high power factor using the proposed control algorithm without the addition of a power factor correction circuit and a dc-link electrolytic capacitor. A detailed theoretical analysis and the experimental results for a 1kW prototype are discussed.

Analysis of Control Conflict between UPFC Multiple Control Functions and Their Interaction Indicator

  • Wang H. F.;Jazaeri M.;Cao Y. J.
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권spc2호
    • /
    • pp.315-321
    • /
    • 2005
  • Interactions among multiple control functions of a UPFC installed in a power system have been observed in power system simulation and been reported in authors' previous publications [1,2]. This paper presents new analytical results about these observed interactions and concludes that they are due to the control conflict between the series and shunt part of the UPFC, which are connected through the internal common capacitor inside the UPFC. Investigation in the paper reveals, for the first time as far as the authors are aware of, that the linkage pattern of UPFC series and shunt part decides whether the control functions implemented by the UPFC series and shunt part conflict each other or not. This linkage pattern of UPFC series and shunt part can be described by the flow of active power through the UPFC at steady-state operation of the power system. Hence in order to predict the possible interactions among multiple control functions of the UPFC, an interaction indicator is proposed in the paper which is the direction and amount of active power flow through the internal link of the UPFC series and shunt part at steady-state operation of the power system. This proposed interaction indicator can be calculated from power system load flow solution without having to run simulation of the power system with UPFC controllers installed. By using the indicator, the interactions among multiple control functions of the UPFC caused by badly set controller's parameters are excluded. Therefore the indicator only identifies the possible existence of inherent control conflict of the UPFC.

A Novel Control Strategy of Three-phase, Four-wire UPQC for Power Quality Improvement

  • Pal, Yash;Swarup, A.;Singh, Bhim
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권1호
    • /
    • pp.1-8
    • /
    • 2012
  • The current paper presents a novel control strategy of a three-phase, four-wire Unified Power Quality (UPQC) to improve power quality. The UPQC is realized by the integration of series and shunt active power filters (APF) sharing a common dc bus capacitor. The realization of shunt APF is carried out using a three-phase, four-leg Voltage Source Inverter (VSI), and the series APF is realized using a three-phase, three-leg VSI. To extract the fundamental source voltages as reference signals for series APF, a zero-crossing detector and sample-and-hold circuits are used. For the control of shunt APF, a simple scheme based on the real component of fundamental load current (I $Cos{\Phi}$) with reduced numbers of current sensors is applied. The performance of the applied control algorithm is evaluated in terms of power-factor correction, source neutral current mitigation, load balancing, and mitigation of voltage and current harmonics in a three-phase, four-wire distribution system for different combinations of linear and non-linear loads. The reference signals and sensed signals are used in a hysteresis controller to generate switching signals for shunt and series APFs. In this proposed UPQC control scheme, the current/voltage control is applied to the fundamental supply currents/voltages instead of fast-changing APF currents/voltages, thus reducing the computational delay and the required sensors. MATLAB/Simulink-based simulations that support the functionality of the UPQC are obtained.

A Novel Induction Heating Type Super Heated Vapor Steamer using Dual Mode Phase Shifted PWM Soft Switching High Frequency Inverter

  • Sugimura, Hisayuki;Eid, Ahmad;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2005년도 전력전자학술대회 논문집
    • /
    • pp.774-777
    • /
    • 2005
  • In this paper, a constant frequency phase shifting PWM controlled voltage source full bridge-type series load resonant high-frequency inverter using the IGBT power modules is presented for innovative consumer electromagnetic induction heating applications such as a hot water producer, steamer and super heated steamer. The full bridge arm side link passive quasi-resonant capacitor snubbers in parallel with the each power semiconductor device and high frequency AC load side linked active edge inductive snubber-assisted series load resonant tank soft switching inverter with a constant frequency phase shifted PWM control scheme is discussed and evaluated on the basis of the simulation and experimental results. It is proved from a practical point of view that the series load resonant and edge resonant hybrid high-frequency soft switching PWM inverter topology, what is called class DE type. including the variable-power variable-frequency(VPVF) regulation function can expand zero voltage soft switching commutation range even under low output power setting ranges, which is more suitable and acceptable for induction heated dual packs fluid heater developed newly for consumer power utilizations. Furthermore, even in the lower output power regulation mode of this high-frequency load resonant tank high frequency inverter circuit it is verified that this inverter can achieve ZVS with the aid of the single auxiliary inductor snubber.

  • PDF

탄소에어로젤 복합전극의 전기용량적 탈이온 공정 특성 (Characteristics of Capacitive Deionization Process using Carbon Aerogel Composite Electrodes)

  • 이기택;조원일;조병원
    • 전기화학회지
    • /
    • 제8권2호
    • /
    • pp.77-81
    • /
    • 2005
  • 전기화학적으로 이온을 흡착시켜 이온을 제거하는 capacitive deionization(CDI)공정용 전극으로 탄소에어로젤에 실리카젤이 첨가된 다공성 탄소에어로젤 복합전극을 사용하여 1,000ppm NaCl수용액에서 탈염 특성에 대한 충전과 방전시 시간에 따른 전류 변화, CDI효율을 조사하였다. Paste rolling법으로 제조된 $10\times10cm^2$다공성 탄소에어로젤 복합전극은 촉매 분야에서 활용되고 있는 다공성 지지체인 실리카젤을 첨가함으로써 CDI 반응진행에 대한 전극활물질 탈락이 없이 전극의 성형성이 크게 향상되었고, 친수성과 전극의 기계적 강도 증가 및 CDI 효율을 증가시킬 수 있었다. 이러한 45개의 전극을 하나의 묶음으로 네 개의 단을 직렬연결 하여, CDI 시스템을 구성하였고 충전 시에는 1.2V, 방전 시에는 0.001V를 각각 10분간 인가하여 실험한 결과 $99\%$ 이상의 CDI 효율을 달성하였다.

New Three-Level PWM DC/DC Converter - Analysis, Design and Experiments

  • Lin, Bor-Ren;Chen, Chih-Chieh
    • Journal of Power Electronics
    • /
    • 제14권1호
    • /
    • pp.30-39
    • /
    • 2014
  • This paper studies a new three-level pulse-width modulation (PWM) resonant converter for high input voltage and high load current applications. In order to use high frequency power MOSFETs for high input voltage applications, a three-level DC converter with two clamped diodes and a flying capacitor is adopted in the proposed circuit. For high load current applications, the secondary sides of the proposed converter are connected in parallel to reduce the size of the magnetic core and copper windings and to decrease the current rating of the rectifier diodes. In order to share the load current and reduce the switch counts, three resonant converters with the same active switches are adopted in the proposed circuit. Two transformers with a series connection in the primary side and a parallel connection in the secondary side are adopted in each converter to balance the secondary side currents. To overcome the drawback of a wide range of switching frequencies in conventional series resonant converters, the duty cycle control is adopted in the proposed circuit to achieve zero current switching (ZCS) turn-off for the rectifier diodes and zero voltage switching (ZVS) turn-on for the active switches. Finally, experimental results are provided to verify the effectiveness of the proposed converter.

A ZVS Resonant Converter with Balanced Flying Capacitors

  • Lin, Bor-Ren;Chen, Zih-Yong
    • Journal of Power Electronics
    • /
    • 제15권5호
    • /
    • pp.1190-1199
    • /
    • 2015
  • This paper presents a new resonant converter to achieve the soft switching of power devices. Two full-bridge converters are connected in series to clamp the voltage stress of power switches at Vin/2. Thus, power MOSFETs with a 500V voltage rating can be used for 800V input voltage applications. Two flying capacitors are connected on the AC side of the two full-bridge converters to automatically balance the two split input capacitor voltages in every switching cycle. Two resonant tanks are used in the proposed converter to share the load current and to reduce the current stress of the passive and active components. If the switching frequency is less than the series resonant frequency of the resonant tanks, the power MOSFETs can be turned on under zero voltage switching, and the rectifier diodes can be turned off under zero current switching. The switching losses on the power MOSFETs are reduced and the reverse recovery loss is improved. Experiments with a 1.5kW prototype are provided to demonstrate the performance of the proposed converter.