• Title/Summary/Keyword: Series and parallel connection

Search Result 87, Processing Time 0.023 seconds

Quench Characteristics of Superconducting Elements using Reactors at Series and Parallel Connections (직·병렬연결시 리액터를 이용한 초전도 소자의 퀜치 특성)

  • Choi, Hyo-Sang;Lim, Sung-Hun;Cho, Yong-Sun;Nam, Gueng-Hyun;Lee, Na-young;Park, Hyoung-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.9
    • /
    • pp.863-869
    • /
    • 2005
  • We investigated quench characteristics of superconducting elements connected in series and parallel each other. The serial and parallel connections of superconducting elements causes a difficulty in simultaneous quench due to slight difference between their critical current densities. In other to induce simultaneous quench, we fabricated four type circuits; serially connected circuit before parallel connection, the circuit connected in parallel before serial connection, serially connected circuit before parallel connection with reactors, the circuit connected in Parallel before serial connection with reactors. We confirmed that the simultaneous quenches occurred in serial and parallel connections of superconducting elements using reactors. In addition, the power burden of superconducting elements was smaller than those of serial and parallel connections of superconducting elements without reactors.

Development of Standard Capacitors with Serial/Parallel Connection Structure for Expanding National Standard Traceability of Capacitance Standard Field (전기용량 국가표준 소급범위 확장을 위한 직/병렬 연결구조의 전기용량 표준기 개발)

  • Kim Han-Jun;Kang Jeon-Hong;Han Sang-Ok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.8
    • /
    • pp.403-407
    • /
    • 2006
  • Standard capacitors, as like as Hamon resistor standards, of series connection/parallel connection ratio $10{\mu}F/1000{\mu}F\;and\;100{\mu}F/10000{\mu}F$ were fabricated for calibration of impedance bridges or analyzers with measuring ranges up to 1 F. The calculated correction terms to the ratio of one measured value in series connection to the value in parallel connection were evaluated to be $1.92{\times}10^{-7}$. These capacitors were designed to be used not only as 100:1 capacitance standards but also as single capacitors or decade capacitors with decade values at frequencies up to 1 kHz.

Five-Level PWM Inverter Using Series and Parallel Alternative Connection of Batteries

  • Park, Jin-Soo;Kang, Feel-soon
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.701-710
    • /
    • 2017
  • This paper presents a five-level PWM inverter using series and parallel connection of voltage sources. The alternative connection is done by an auxiliary circuit consisted of a switch, three diodes, and two batteries. The auxiliary circuit is located between input dc voltage source and H-bridge cell. Thanks to the auxiliary circuit, the proposed inverter synthesizes five-level output voltage in an effective way. Topologically both batteries are charged and discharged in the same rate, so it does not need to apply battery voltage balancing control method. Theoretical analysis of the proposed inverter is verified by computer-aided simulation and experiment based on a prototype of 1kW.

Enhancement of Power Rating for the Resistive Fault Current Limiter (병렬우선 직렬연결된 YBCO박막형 초전도 한류기의 용량증대)

  • Park K.B.;LEE B.W.;Kang J.S.;Oh I.S.;hyun O.B.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.806-808
    • /
    • 2004
  • The series and parallel connection is essential for increasing power ratings of resistive type for fault current limiters. To increase voltage class, components are connected in series and to increase current level to the nominal value, they are connected in parallel. There are two ways to connect components in series and parallel. First, connected in series and then the module connects to the parallel. Second, connected in parallel and the module connects to the series. We have studied for the two ways. In this paper, we particularly investigated way to connect components in parallel first This way has the advantage of inducing effective simultaneous quench without any other devices, for example, the thing which is inducing magnetic field to the limiting and shunt resistors. And also we studied for the endurance of component which is patterned to the bi-spiral for prospective fault current. It is very important to understand this, because SFCL will use as the only device to decrease burden of circuit breaker. As experimental results, limiting component patterned to bi-spiral endures fault current up to 30kA and it works well, in parallel to series connection,

  • PDF

Comparative properties for serial-parallel connection of DSC with CNT and pt counter electrodes (CNT와 Pt 상대전극을 가지는 염료감응형 태양전지의 직렬 ${\cdot}$ 병렬 연결에 따른 특성비교)

  • Choi, Jin-Young;Hong, Ji-Tae;Kim, Mi-Jeong;Lee, Yong-Chul;Kim, Hee-Je
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.335-338
    • /
    • 2007
  • Cost effectiveness is an important parameter for producing DSSCs as compared to the widely used conventional silicon based solar cells. A fluorine-doped tin oxide (FTO) substrate coated with a catalytic amount of platinum is used as counter electrode in dye-sensitized solar cell. Carbonaceous materials are quite attractive to replace platinum due to their high electronic conductivity, corrosion resistance towards $I_{2}$, good catalytic effect and low cost. In this paper, the unit DSSCs with Pt and CNT as a counter electrode were connected in series-parallel externally, then the current-voltage curves were investigated to find out the connection characteristics of the DSSC with CNT counter electrode. The connection characteristics of the DSSC with CNT counter electrode is superior to that of the DSSC with Pt counter electrode. And a parallel connection of the DSSC with CNT counter electrode has higher efficiency than a series connection of that.

  • PDF

EMI based multi-bolt looseness detection using series/parallel multi-sensing technique

  • Chen, Dongdong;Huo, Linsheng;Song, Gangbing
    • Smart Structures and Systems
    • /
    • v.25 no.4
    • /
    • pp.423-432
    • /
    • 2020
  • In this paper, a novel but practical approach named series/parallel multi-sensing technique was proposed to evaluate the bolt looseness in a bolt group. The smart washers (SWs), which were fabricated by embedding a Lead Zirconate Titanate (PZT) transducer into two flat metal rings, were installed to the bolts group. By series connection of SWs, the impedance signals of different bolts can be obtained through only one sweep. Therefore, once the loosening occurred, the shift of different peak frequencies can be used to locate which bolt has loosened. The proposed multi input single output (MISO) damage detection scheme is very suitable for the structural health monitoring (SHM) of joint with a large number of bolts connection. Another notable contribution of this paper is the proposal of 3-dB bandwidth root mean square deviation (3 dB-RMSD) which can quantitatively evaluate the severity of bolt looseness. Compared with the traditional naked-eye observation method, the equivalent circuit based 3-dB bandwidth can accurately define the calculation range of RMSD. An experiment with three bolted connection specimens that installed the SWs was carried out to validate our proposed approach. Experimental result shows that the proposed 3 dB-RMSD based multi-sensing technique can not only identify the loosened bolt but also monitor the severity of bolt looseness.

Electricity Generations in Submerged-flat and Stand-flat MFC Stacks according to Electrode Connection (침지 및 직립 평판형 MFC 스택에서 전극연결 방식에 따른 전기발생량 비교)

  • Yu, Jaecheul;Park, Younghyun;Lee, Taeho
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.4
    • /
    • pp.589-593
    • /
    • 2016
  • Microbial fuel cell (MFC) can produce electricity from oxidation-reduction of organic and inorganic matters by electrochemically active bacteria as catalyst. Stacked MFCs have been investigated for overcoming low electricity generation of single MFC. In this study, two-typed stacked-MFCs (submerged-flat and stand-falt) were operated according to electrode connection for optimal stacked technology of MFC. In case of submerged-flat MFC with all separator electrode assembly (SEA) sharing anode chamber, MFC with mixed-connection showed more voltage loss than MFC with single-connection method. And MFC stacked in parallel showed better voltage production than MFC stacked in series. In case of stand-flat MFC, voltage loss was bigger when SEAs sharing anodic chamber only were connected in series. Voltage loss was decreased when SEAs parallel connected SEAs sharing anodic chamber were connected in series.

Series and Parallel Sin+Cos PSS (직렬 및 병렬 Sin+Cos 전력계통안정화장치)

  • Lee, Sang-Seung
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.87-89
    • /
    • 2005
  • This paper proposes new series and parallel Sin+Cos PSS(power system stabilizer) for the purpose to improve the existing PSS1A's performance. The purpose of PSS is used to enhance damping of power system oscillations through injection of auxiliary signal for an excitation control terminal. The Proposed series and Parallel Sin+Cos PSS is connected adding the Sin+Cos terms additionally with serial and with parallel connection in a conventional PSS1A. The proposed controller is aim to considering of a damping of oscillation when it changes parameter fluctuations or operational load variations in a power system. The object of electric power system is KEPCO system and the voltage of power transmission line is a 154kV and a 345kV. The PSCAD/EMTDC package is used to authorize the effect of the proposed controller. Simulations were shown by and compared with the waveforms for frequency, voltage and electric power.

  • PDF

Series-Parallel Connected Capacitor Type Boost Converter for a Single-Phase SRM

  • Lee, Dong-Hee;Liang, Jiang;Ahn, Jin-Woo
    • Journal of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.388-395
    • /
    • 2010
  • An active boost converter for a single phase SRM using series-parallel connected capacitors is proposed in this paper. The proposed active boost converter has two diodes and one power switch with an anti-parallel diode and one additional boost capacitor. The additional boost capacitor could be series or parallel connected to the dc-link capacitor to produce proper excitation and demagnetization voltage. The proposed active boost converter can easily achieve a fast excitation and demagnetization from the capacitor connection. In this paper, series and parallel connected converters are reviewed, and the detailed operating modes as well as the voltage characteristics of the proposed converter are analyzed. The simulation and experimental results shows the effectiveness of the proposed active boost converter.

Characteristics of a Flux-Lock Type Superconducting Fault Current Limiter According to the Parallel Connection of the Superconducting Elements. (초전도 한류소자의 병렬연결에 따른 자속구속형 초전도 한류기의 특성 분석)

  • Oh, Kum-Gom;Jung, Byung-Ik;Choi, Hyo-Sang
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.2
    • /
    • pp.198-201
    • /
    • 2008
  • We investigated the operating characteristics of the flux-lock type superconducting fault current limiter(SFCL) with the parallel connection between the primary and secondary windings which are connected with two superconducting units in series. The parallel connection for current level increase of the flux-lock type SFCL is necessary to apply the SFCL into the power system. The resistance generated in superconducting units was dependent upon the winding direction of the primary and the secondary coils, which can reduce the power burden. The resistance of the superconducting elements in the subtractive polarity winding is higher than that of the additive polarity winding. The fault current limiting effect of the subtractive polarity winding is better than that of the additive polarity winding. From this results, we confirmed that the power capacity of the flux-lock type SFCL could be increased by the parallel connection of the superconducting units.