• Title/Summary/Keyword: Serial Genetic Algorithm

Search Result 13, Processing Time 0.026 seconds

Serial pendulum DVA design using Genetic Algorithm (GA) by considering the pendulum nonlinearity

  • Lovely Son;Firman Erizal;Mulyadi Bur;Agus Sutanto
    • Structural Engineering and Mechanics
    • /
    • v.89 no.6
    • /
    • pp.549-556
    • /
    • 2024
  • A serial pendulum dynamic vibration absorber (DVA) was designed to suppress the vibration of two degrees of freedom (Two-DOF) structure model. The optimal DVA parameters are selected using a genetic algorithm (GA) by minimizing the fitness function formulated from the system's frequency response function (FRF). Two fitness function criteria, using one and two target frequency ranges, were utilized to calculate the optimal DVA parameters. The optimized serial pendulum DVA parameters were used to reduce structural vibration under free and forced excitation conditions. The simulation study found that the serial pendulum DVA can effectively reduce the vibration response for a small excitation amplitude. However, the DVA performance decreases for a large excitation amplitude due to the nonlinearity of pendulum motion, and the percentage of vibration response attenuation is smaller than that obtained using a small excitation amplitude.

Optimal Design of Multi-Fuzzy Controller and Its application to Air Conditioning System (다중 퍼지 제어기의 최적 설계와 에어컨 시스템으로의 적용)

  • Jang, Han-Jong;Choe, Jeong-Nae;O, Seong-Gwon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.313-316
    • /
    • 2008
  • 에어컨 시스템은 압축기(Compressor), 응축기(Condenser), 증발기(Evaporator)와 확장밸브(Expansion Valve)로 구성되며, 에어컨 시스템에서 과열도와 저압(증발기의 압력)은 시스템의 효율 증대 및 성능 개선과 안정성에 대하여 결정적인 영향을 미친다. 따라서, 과열도와 저압을 조절하기 위해, 각각의 압축기내의 인버터 주파수와 확장밸브의 개도 제어가 중요하며 선형과 비선형 시스템 모두에 대하여 견실한 성능을 나타내고, 외란에 대하여 강인한 성능을 보이는 퍼지 제어기를 설계한다. 본 논문에서는 과열도와 저압을 제어하기 위하여, 3대의 확장밸브와 1대의 압축기를 가진 에어컨 시스템에 대하여 다중 퍼지 제어기를 설계한다. 또한, 각 제어 플랜트에 대하여 최적의 퍼지 제어기를 설계하기 위하여 3가지 최적화 알고리즘을 사용한다. 즉, 직렬 유전자 알고리즘(Serial Genetic Algorithm; SGA)과 병렬 유전자 알고리즘인 계층적 공정 경쟁 유전자 알고리즘(Hierarchical Fair Competition Genetic Algorithm; HFCGA), 그리고 Particle Swarm Optimization(PSO)을 사용하여 다중 퍼지 제어기를 최적화하고 시뮬레이션의 결과를 비교한다.

  • PDF

Real-time processing system for embedded hardware genetic algorithm (임베디드 하드웨어 유전자 알고리즘을 위한 실시간 처리 시스템)

  • Park Se-hyun;Seo Ki-sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.7
    • /
    • pp.1553-1557
    • /
    • 2004
  • A real-time processing system for embedded hardware genetic algorithm is suggested. In order to operate basic module of genetic algorithm in parallel, such as selection, crossover, mutation and evaluation, dual processors based architecture is implemented. The system consists of two Xscale processors and two FPGA with evolvable hardware, which enables to process genetic algorithm efficiently by distributing the computational load of hardware genetic algorithm to each processors equally. The hardware genetic algorithm runs on Linux OS and the resulted chromosome is executed on evolvable hardware in FPGA. Furthermore, the suggested architecture can be extended easily for a couple of connected processors in serial, making it accelerate to compute a real-time hardware genetic algorithm. To investigate the effect of proposed approach, performance comparisons is experimented for an typical computation of genetic algorithm.

Parallel Genetic Algorithm for Structural Optimization on a Cluster of Personal Computers (구조최적화를 위한 병렬유전자 알고리즘)

  • 이준호;박효선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.40-47
    • /
    • 2000
  • One of the drawbacks of GA-based structural optimization is that the fitness evaluation of a population of hundreds of individuals requiring hundreds of structural analyses at each CA generation is computational too expensive. Therefore, a parallel genetic algorithm is developed for structural optimization on a cluster of personal computers in this paper. Based on the parallel genetic algorithm, a population at every generation is partitioned into a number of sub-populations equal to the number of slave computers. Parallelism is exploited at sub-population level by allocationg each sub-population to a slave computer. Thus, fitness of a population at each generation can be concurrently evaluated on a cluster of personal computers. For implementation of the algorithm a virtual distributed computing system in a collection of personal computers connected via a 100 Mb/s Ethernet LAN. The algorithm is applied to the minimum weight design of a steel structure. The results show that the computational time requied for serial GA-based structural optimization process is drastically reduced.

  • PDF

A kinematic Analysis of Binary Robot Manipulator using Genetic Algorithms

  • Gilha Ryu;Ihnseok Rhee
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.76-80
    • /
    • 2001
  • A binary parallel robot manipulator uses actuators that have only two stable states being built by stacking variable geometry trusses on top of each other in a long serial chain. Discrete characteristics of the binary manipulator make it impossible to analyze an inverse kinematic problem in conventional ways. We therefore introduce new definitions of workspace and inverse kinematic solution, and the apply a genetic algorithm to the newly defied inverse kinematic problem. Numerical examples show that our genetic algorithm is very efficient to solve the inverse kinematic problem of binary robot manipulators.

  • PDF

Geoacoustic Parameters Inversion Using Parallel Multi-Population Genetic Algorithm (병렬 다중 개체군 유전 알고리즘을 이용한 지음향 파라미터 역산)

  • Oh Taekhwan;Na Jungyul;Lee Seongwook;Kim Seongil;Park Joung-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.6
    • /
    • pp.309-316
    • /
    • 2005
  • This paper Presents the geoacoustic inversion with Parallel Multi-Population Genetic Algorithm (PMPGA). This method is the modified form of simple genetic algorithm (SGA), which is devised for complementing the defects of simple genetic algorithm. The light bulb source and vertical line array (VLA) receiver are used for geoacoustic inversion. The results of this study show the geoacoustic Parameters can be estimated by PMPGA and the proposed algorithm is 1.7 times as fast as serial one on an average.

Performance Analysis of Distributed Genetic Algorithms for Traveling Salesman Problem (순회판매원문제를 위한 분산유전알고리즘 성능평가)

  • Kim, Young Nam;Lee, Min Jung;Ha, Chunghun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.4
    • /
    • pp.81-89
    • /
    • 2016
  • Distributed genetic algorithm (DGA), also known as island model or coarse-grained model, is a kind of parallel genetic algorithm, in which a population is partitioned into several sub-populations and each of them evolves with its own genetic operators to maintain diversity of individuals. It is known that DGA is superior to conventional genetic algorithm with a single population in terms of solution quality and computation time. Several researches have been conducted to evaluate effects of parameters on GAs, but there is no research work yet that deals with structure of DGA. In this study, we tried to evaluate performance of various genetic algorithms (GAs) for the famous symmetric traveling salesman problems. The considered GAs include a conventional serial GA (SGA) with IGX (Improved Greedy Crossover) and several DGAs with various combinations of crossover operators such as OX (Order Crossover), DPX (Distance Preserving Crossover), GX (Greedy Crossover), and IGX. Two distinct immigration policies, conventional noncompetitive policy and newly proposed competitive policy are also considered. To compare performance of GAs clearly, a series of analysis of variance (ANOVA) is conducted for several scenarios. The experimental results and ANOVAs show that DGAs outperform SGA in terms of computation time, while the solution quality is statistically the same. The most effective crossover operators are revealed as IGX and DPX, especially IGX is outstanding to improve solution quality regardless of type of GAs. In the perspective of immigration policy, the proposed competitive policy is slightly superior to the conventional policy when the problem size is large.

A Simple Stereo Matching Algorithm using PBIL and its Alternative (PBIL을 이용한 소형 스테레오 정합 및 대안 알고리즘)

  • Han Kyu-Phil
    • The KIPS Transactions:PartB
    • /
    • v.12B no.4 s.100
    • /
    • pp.429-436
    • /
    • 2005
  • A simple stereo matching algorithm using population-based incremental learning(PBIL) is proposed in this paper to decrease the general problem of genetic algorithms, such as memory consumption and inefficiency of search. PBIL is a variation of genetic algorithms using stochastic search and competitive teaming based on a probability vector. The structure of PBIL is simpler than that of other genetic algorithm families, such as serial and parallel ones, due to the use of a probability vector. The PBIL strategy is simplified and adapted for stereo matching circumstances. Thus, gene pool, chromosome crossover, and gene mutation we removed, while the evolution rule, that fitter chromosomes should have higher survival probabilities, is preserved. As a result, memory space is decreased, matching rules are simplified and computation cost is reduced. In addition, a scheme controlling the distance of neighbors for disparity smoothness is inserted to obtain a wide-area consistency of disparities, like a result of coarse-to-fine matchers. Because of this scheme, the proposed algorithm can produce a stable disparity map with a small fixed-size window. Finally, an alterative version of the proposed algorithm without using probability vector is also presented for simpler set-ups.

Design of Optimized Fuzzy Cascade Controller Based on HFCGA for Ball & Beam System (볼빔 시스템에 대한 계층적 공정 경쟁 유전자 알고리즘을 이용한 최적 퍼지 Cascade 제어기 설계)

  • Jang, Han-Jong;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.391-398
    • /
    • 2009
  • In this study, we introduce the design methodology of an optimized fuzzy cascade controller with the aid of hierarchical fair competition-based genetic algorithm(HFCGA) for ball & beam system. The ball & beam system consists of servo motor, beam and ball, and remains mutually connected in line in itself. The ball & beam system determines the position of ball through the control of a servo motor. The displacement change the position of ball leads to the change of the angle of the beam which determines the position angle of a servo motor. Consequently the displacement change of the position of the moving ball and its ensuing change of the angle of the beam results in the change of the position angle of a servo motor. We introduce the fuzzy cascade controller scheme which consists of the outer(1st) controller and the inner(2nd) controller as two cascaded fuzzy controllers, and auto-tune the control parameters(scaling factors) of each fuzzy controller using HFCGA. The inner controller controls the position of lever arm which corresponds to the position angle of a servo motor and the outer controller decides the set-point value of the inner controller. HFCGA is a kind of parallel genetic algorithms(PGAs), and helps alleviate the premature convergence being generated in conventional genetic algorithms (GAs). For a detailed comparative analysis from the viewpoint of the performance results and the design methodology, the proposed method for the ball & beam system which is realized by the fuzzy cascade controller based on HFCGA, is presented in comparison with the conventional PD cascade controller based on serial genetic algorithms.

Experimental approach for selecting an optimal PID control gain using genetic algorithm for stewart platform (유전 알고리즘을 이용한 스튜어트 플랫폼의 최적 PID 제어 게인 선정을 위한 실험적 접근)

  • Park, Min-Kyu;Hong, Sung-Jin;Lee, Min-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.1
    • /
    • pp.73-80
    • /
    • 2000
  • The stewart platform manipulator proposed by stewart is the parallel manipulator which is composed of several independent actuators connecting the upper plate with the base plate and capable of executing a six degree of freedom motion. The manipulator has a structure of a closed loop form, and provides better load-to-weight ratio and ratio and rigidity than a serial manipulator with an open loop form. Moreover, the manipulator has high positional accuracy because position errors of actuators are not additive. Because of these advantages, this manipulator is widely used in many engineering applications such as a driving simulator, a tool of machining center, a force/torque sensor and so on. When this Stewart platform manipulator is controlled in joint space, it is difficult to design a controller using an analytic method due to nonhnearity and unknown parameters of actuators. Therefore, a PID controller is often used because of easiness in applications. To find the PID control gain, a trial-and-error method is generally used. This method is time-consuming, and does not guarantee a optimal gain. Thus, this paper proposes a GA-PID controller which selects an optimal PID control gain using genetic algorithms. And this proposed controller is evaluated experimentally and shows acceptable performance.

  • PDF