• Title/Summary/Keyword: Sequestosome

Search Result 7, Processing Time 0.023 seconds

P62 and the Sequestosome, a Novel Mechanism for Protein Metabolism

  • Shin, Jae-Kyoon
    • Archives of Pharmacal Research
    • /
    • v.21 no.6
    • /
    • pp.629-633
    • /
    • 1998
  • In addition to selecting proteins for degradation by the 26S proteasome, ubiqitination appears to serve other regulatory functions, including for endosomal/lysosomal targeting, protein translocation, and enzyme modification. Currently, little is known how multiubiquitin chains are recognized by these cellular mechanisms. Within the 26S proteasome, one subunit (Mcb1/S5a) has been identified that has affinity for multiubiquitin chains and may function as a ubiquitin receptor. We recently found that a non-proteasomal protein p62 also preferentially binds multiubiquitin chains and forms a novel cytoplasmic structure "sequestosome" which serves as a storage place for ubiquitinated proteins. In the present manuscript, the role and regulation of p62 in relation to the sequestosomal function will be reviewed.

  • PDF

α, γ-Mangostins Induce Autophagy and Show Synergistic Effect with Gemcitabine in Pancreatic Cancer Cell Lines

  • Kim, Myoungjae;Chin, Young-Won;Lee, Eun Joo
    • Biomolecules & Therapeutics
    • /
    • v.25 no.6
    • /
    • pp.609-617
    • /
    • 2017
  • Pancreatic cancer is one of the most lethal and aggressive cancers in the world. However, no effective treatment is currently available for pancreatic cancer. The objective of this study was to determine the anti-pancreatic cancer effect of ${\alpha}$-mangostin (${\alpha}M$) and ${\gamma}$-mangostin (${\gamma}M$) extracted from the pericarp of Garcinia mangostana L.. Both ${\alpha}$M and ${\gamma}M$ reduced the viability of pancreatic cancer cells MIA PaCa-2 and PANC-1 in a dose-dependent manner. These compounds induced apoptosis by increasing c-PARP and c-Caspase 3 levels. They also induced autophagy by increasing levels of microtubule-associated protein 1A/1B light chain 3B (LC3II) in both cell lines while decreasing sequestosome 1 (p62) in MIA PaCa-2. Both ${\alpha}$M and ${\gamma}M$ induced autophagy through increasing phosphorylation levels of AMP-activated protein kinase (p-AMPK) and p38-mitogen activated protein kinase (p-p38) while decreasing phosphorylation level of mammalian target of rapamycin complex 1 (p-mTOR). Of various microRNAs (miRNA), miR-18a was found to be a putative regulatory miRNA for autophagy induced by ${\alpha}$M or ${\gamma}M$. In combination with gemcitabine, a compound frequently used in pancreatic cancer treatment, ${\alpha}$M and ${\gamma}M$ showed synergistic anti-cancer effects in MIA PaCa-2. Collectively, these results suggest that ${\alpha}$M and ${\gamma}M$ can induce apoptosis and autophagy in pancreatic cancer cells and that their anti-cancer effect is likely to be associated with miR-18a. In conclusion, ${\alpha}$M and ${\gamma}M$ might be used as a potential new therapy for pancreatic cancer.

Neuroprotective Effect of Astersaponin I against Parkinson's Disease through Autophagy Induction

  • Zhang, Lijun;Park, Jeoung Yun;Zhao, Dong;Kwon, Hak Cheol;Yang, Hyun Ok
    • Biomolecules & Therapeutics
    • /
    • v.29 no.6
    • /
    • pp.615-629
    • /
    • 2021
  • An active compound, triterpene saponin, astersaponin I (AKNS-2) was isolated from Aster koraiensis Nakai (AKNS) and the autophagy activation and neuroprotective effect was investigated on in vitro and in vivo Parkinson's disease (PD) models. The autophagy-regulating effect of AKNS-2 was monitored by analyzing the expression of autophagy-related protein markers in SH-SY5Y cells using Western blot and fluorescent protein quenching assays. The neuroprotection of AKNS-2 was tested by using a 1-methyl-4-phenyl-2,3-dihydropyridium ion (MPP+)-induced in vitro PD model in SH-SY5Y cells and an MPTP-induced in vivo PD model in mice. The compound-treated SH-SY5Y cells not only showed enhanced microtubule-associated protein 1A/1B-light chain 3-II (LC3-II) and decreased sequestosome 1 (p62) expression but also showed increased phosphorylated extracellular signal-regulated kinases (p-Erk), phosphorylated AMP-activated protein kinase (p-AMPK) and phosphorylated unc-51-like kinase (p-ULK) and decreased phosphorylated mammalian target of rapamycin (p-mTOR) expression. AKNS-2-activated autophagy could be inhibited by the Erk inhibitor U0126 and by AMPK siRNA. In the MPP+-induced in vitro PD model, AKNS-2 reversed the reduced cell viability and tyrosine hydroxylase (TH) levels and reduced the induced α-synuclein level. In an MPTP-induced in vivo PD model, AKNS-2 improved mice behavioral performance, and it restored dopamine synthesis and TH and α-synuclein expression in mouse brain tissues. Consistently, AKNS-2 also modulated the expressions of autophagy related markers in mouse brain tissue. Thus, AKNS-2 upregulates autophagy by activating the Erk/mTOR and AMPK/mTOR pathways. AKNS-2 exerts its neuroprotective effect through autophagy activation and may serve as a potential candidate for PD therapy.

Endoplasmic Reticulum Stress-Mediated p62 Downregulation Inhibits Apoptosis via c-Jun Upregulation

  • Yu, Wenjun;Wang, Busong;Zhou, Liang;Xu, Guoqiang
    • Biomolecules & Therapeutics
    • /
    • v.29 no.2
    • /
    • pp.195-204
    • /
    • 2021
  • Cereblon (CRBN), a substrate receptor of cullin 4-RING E3 ligase (CRL4) regulates the ubiquitination and degradation of c-Jun, mediating the lipopolysaccharide-induced cellular response. However, the upstream signaling pathway that regulates this process is unknown. In this study, we describe how endoplasmic reticulum (ER) stress reversely regulates sequestosome-1 (p62)and c-Jun protein levels. Furthermore, our study reveals that expression of p62 attenuates c-Jun protein levels through the ubiquitinproteasome system. Conversely, siRNA knockdown of p62 elevates c-Jun protein levels. Immunoprecipitation and immunoblotting experiments demonstrate that p62 interacts with c-Jun and CRBN to form a ternary protein complex. Moreover, we find that CRBN knockdown completely abolishes the inhibitory effect of p62 on c-Jun. Using brefeldin A as an inducer of ER stress, we demonstrate that the p62/c-Jun axis participates in the regulation of ER stress-induced apoptosis, and that CRBN is required for this regulation. In summary, we have identified an upstream signaling pathway, which regulates p62-mediated c-Jun degradation. Our findings elucidate the underlying molecular mechanism by which p62/c-Jun axis regulates the ER stress-induced apoptosis, and provide a new molecular connection between ER stress and apoptosis.

Repopulation of autophagy-deficient stromal cells with autophagy-intact cells after repeated breeding in uterine mesenchyme-specific Atg7 knockout mice

  • Ji-Eun Oh;Sojung Kwon;Hyunji Byun;Haengseok Song;Hyunjung Jade Lim
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.50 no.3
    • /
    • pp.170-176
    • /
    • 2023
  • Objective: Autophagy is highly active in ovariectomized mice experiencing hormone deprivation, especially in the uterine mesenchyme. Autophagy is responsible for the turnover of vasoactive factors in the uterus, which was demonstrated in anti-Müllerian hormone receptor type 2 receptor (Amhr2)-Cre-driven autophagy-related gene 7 (Atg7) knockout (Amhr-Cre/Atg7f/f mice). In that study, we uncovered a striking difference in the amount of sequestosome 1 (SQSTM1) accumulation between virgin mice and breeder mice with the same genotype. Herein, we aimed to determine whether repeated breeding changed the composition of mesenchymal cell populations in the uterine stroma. Methods: All female mice used in this study were of the same genotype. Atg7 was deleted by Amhr2 promoter-driven Cre recombinase in the uterine stroma and myometrium, except for a triangular stromal region on the mesometrial side. Amhr-Cre/Atg7f/f female mice were divided into two groups: virgin mice with no mating history and aged between 11 and 12 months, and breeder mice with at least 6-month breeding cycles with multiple pregnancies and aged around 12 months. The uteri were used for Western blotting and immunofluorescence staining. Results: SQSTM1 accumulation, representing Atg7 deletion and halted autophagy, was much higher in virgin mice than in breeders. Breeders showed reduced accumulation of several vasoconstrictive factors, which are potential autophagy targets, in the uterus, suggesting that the uterine stroma was repopulated with autophagy-intact cells during repeated pregnancies. Conclusion: Multiple pregnancies seem to have improved the uterine environment by replacing autophagy-deficient cells with autophagy-intact cells, providing evidence of cell mixing.

Effect of different levels of protein concentrates supplementation on the growth performance, plasma amino acids profile and mTOR cascade genes expression in early-weaned yak calves

  • Peng, Q.H.;Khan, N.A.;Xue, B.;Yan, T.H.;Wang, Z.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.2
    • /
    • pp.218-224
    • /
    • 2018
  • Objective: This study evaluated the effects of different levels of protein concentrate supplementation on the growth performance of yak calves, and correlated the growth rate to changes occurring in the plasma- amino acids, -insulin profile, and signaling activity of mammalian target of rapamycin (mTOR) cascade to characterize the mechanism through which the protein synthesis can be improved in early weaned yaks. Methods: For this study, 48 early (3 months old) weaned yak calves were selected, and assigned into four dietary treatments according to randomized complete block design. The four blocks were balanced for body weight and sex. The yaks were either grazed on natural pasture (control diet) in a single herd or the grazing yaks was supplemented with one of the three protein rich supplements containing low (17%; LP), medium (19%; MP), or high (21%; HP) levels of crude proteins for a period of 30 days. Results: Results showed that the average daily gain of calves increased (0.14 vs 0.23-0.26 kg; p<0.05) with protein concentrates supplementation. The concentration of plasma methionine increased (p<0.05; 8.6 vs $10.1-12.4{\mu}mol/L$), while those of serine and tyrosine did not change (p>0.05) when the grazing calves were supplemented with protein concentrates. Compared to control diet, the insulin level of calves increased (p<0.05; 1.86 vs $2.16-2.54{\mu}IU/mL$) with supplementation of protein concentrates. Addition of protein concentrates up-regulated (p<0.05) expression of mTOR-raptor, mammalian vacuolar protein sorting 34 homolog, the translational regulators eukaryotic translation initiation factor 4E binding protein 1, and S6 kinase 1 genes in both Longissimus dorsi and semitendinosus. In contrast, the expression of sequestosome 1 was down-regulated in the concentrate supplemented calves. Conclusion: Our results show that protein supplementation improves the growth performance of early weaned yak calves, and that plasma methionine and insulin concentrations were the key mediator for gene expression and protein deposition in the muscles.

Induction of Forkhead Class box O3a and apoptosis by a standardized ginsenoside formulation, KG-135, is potentiated by autophagy blockade in A549 human lung cancer cells

  • Yao, Chih-Jung;Chow, Jyh-Ming;Chuang, Shuang-En;Chang, Chia-Lun;Yan, Ming-De;Lee, Hsin-Lun;Lai, I-Chun;Lin, Pei-Chun;Lai, Gi-Ming
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.247-256
    • /
    • 2017
  • Background: KG-135, a standardized formulation enriched with Rk1, Rg3, and Rg5 ginsenosides, has been shown to inhibit various types of cancer cells; however, the underlying mechanisms are not fully understood. In this study, we explored its effects in A549 human lung cancer cells to investigate the induction of Forkhead Class box O3a (FOXO3a) and autophagy. Methods: Cell viability was determined by sulforhodamine B staining. Apoptosis and cell cycle distribution were analyzed using flow cytometry. The changes of protein levels were determined using Western blot analysis. Autophagy induction was monitored by the formation of acidic vesicular organelles stained with acridine orange. Results: KG-135 effectively arrested the cells in G1 phase with limited apoptosis. Accordingly, a decrease of cyclin-dependent kinase-4, cyclin-dependent kinase-6, cyclin D1, and phospho-retinoblastoma protein, and an increase of p27 and p18 proteins were observed. Intriguingly, KG-135 increased the tumor suppressor FOXO3a and induced the accumulation of autophagy hallmark LC3-II and acidic vesicular organelles without an increase of the upstream marker Beclin-1. Unconventionally, the autophagy adaptor protein p62 (sequestosome 1) was increased rather than decreased. Blockade of autophagy by hydroxychloroquine dramatically potentiated KG-135-induced FOXO3a and its downstream (FasL) ligand accompanied by the cleavage of caspase-8. Meanwhile, the decrease of Bcl-2 and survivin, as well as the cleavage of caspase-9, were also drastically enhanced, resulting in massive apoptosis. Conclusion: Besides arresting the cells in G1 phase, KG-135 increased FOXO3a and induced an unconventional autophagy in A549 cells. Both the KG-135-activated extrinsic FOXO3a/FasL/caspase-8 and intrinsic caspase-9 apoptotic pathways were potentiated by blockade of autophagy. Combination of KG-135 and autophagy inhibitor may be a novel strategy as an integrative treatment for cancers.