• Title/Summary/Keyword: Sequential two-point diagonal quadratic approximate optimization (STDQAO)

Search Result 2, Processing Time 0.015 seconds

Comparative Study of Approximate Optimization Techniques in CAE-Based Structural Design (구조 최적설계를 위한 다양한 근사 최적화기법의 적용 및 비교에 관한 연구)

  • Song, Chang-Yong;Lee, Jong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1603-1611
    • /
    • 2010
  • The comparative study of regression-model-based approximate optimization techniques used in the strength design of an automotive knuckle component that will be under bump and brake loading conditions is carried out. The design problem is formulated such that the cross-sectional sizing variables are determined by minimizing the weight of the knuckle component that is subjected to stresses, deformations, and vibration frequency constraints. The techniques used in the comparative study are sequential approximate optimization (SAO), sequential two-point diagonal quadratic approximate optimization (STDQAO), and approximate optimization based on enhanced moving least squares method (MLSM), such as CF (constraint feasible)-MLSM and Post-MLSM. Commercial process integration and design optimization (PIDO) tools are utilized for the application of SAO and STDQAO. The enhanced MLSM-based approximate optimization techniques are newly developed to ensure constraint feasibility. The results of the approximate optimization techniques are compared with those of actual non-approximate optimization to evaluate their numerical performances.

Sizing Optimization of CFRP Lower Control Arm Considering Strength and Stiffness Conditions (강도 및 강성 조건을 고려한 탄소섬유강화플라스틱(CFRP) 로어 컨트롤 아암의 치수 최적설계)

  • Lim, Juhee;Doh, Jaehyeok;Yoo, SangHyuk;Kang, Ohsung;Kang, Keonwook;Lee, Jongsoo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.4
    • /
    • pp.389-396
    • /
    • 2016
  • The necessity for environment-friendly material development has emerged in the recent automotive field due to stricter regulations on fuel economy and environmental concerns. Accordingly, the automotive industry is paying attention to carbon fiber reinforced plastic (CFRP) material with high strength and stiffness properties while the lightweight. In this study, we determine a shape of lower control arm (LCA) for maximizing the strength and stiffness by optimizing the thickness of each layer when the stacking angle is fixed due to the CFRP manufacturing problems. Composite materials are laminated in the order of $0^{\circ}$, $90^{\circ}$, $45^{\circ}$, and $-45^{\circ}$ with a symmetrical structure. For the approximate optimal design, we apply a sequential two-point diagonal quadratic approximate optimization (STDQAO) and use a process integrated design optimization (PIDO) code for this purpose. Based on the physical properties calculated within a predetermined range of laminate thickness, we perform the FEM analysis and verify whether it satisfies the load and stiffness conditions or not. These processes are repeated for successive improved objective function. Optimized CFRP LCA has the equivalent stiffness and strength with light weight structure when compared to conventional aluminum design.