• Title/Summary/Keyword: Sequential operation

Search Result 247, Processing Time 0.044 seconds

A Parallel Collaborative Sphere Decoder for a MIMO Communication System

  • Koo, Jihun;Kim, Soo-Yong;Kim, Jaeseok
    • Journal of Communications and Networks
    • /
    • v.16 no.6
    • /
    • pp.620-626
    • /
    • 2014
  • In this paper, we propose a parallel collaborative sphere decoder with a scalable architecture promising quasi-maximum likelyhood performance with a relatively small amount of computational resources. This design offers a hardware-friendly algorithm using a modified node operation through fixing the variable complexity of the critical path caused by the sequential nature of the conventional sphere decoder (SD). It also reduces the computational complexity compared to the fixed-complexity sphere decoder (FSD) algorithm by tree pruning using collaboratively operated node operators. A Monte Carlo simulation shows that our proposed design can be implemented using only half the parallel operators compared to the approach using an ideal fully parallel scheme such as FSD, with only about a 7% increase of the normalized decoding time for MIMO dimensions of $16{\times}16$ with 16-QAM modulation.

The Systematic Evaluation of the SCADA Proposals for Dam and Water Supply Office (감시제어 시스템의 체계적 기술평가 방안)

  • Paik, D.H.;Lee, E.W.;Lim, J.I.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.149-151
    • /
    • 1997
  • Korea Water Resources Corporation (KOWACO) has used hard wired sequential control system for dams and SCADA / DCS for water supply offices. The control system, which consists of automatic control, communication and computer science, has to look for the security of operation and the quality of generated power and treated water. In this paper, we would like to propose the systematic evaluation of technical proposals such as purpose, method/procedure, evaluation criteria and report preparation.

  • PDF

A High-Resolution Dual-Loop Digital DLL

  • Kim, Jongsun;Han, Sang-woo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.4
    • /
    • pp.520-527
    • /
    • 2016
  • A new dual-loop digital delay-locked loop (DLL) using a hybrid (binary + sequential) search algorithm is presented to achieve both wide-range operation and high delay resolution. A new phase-interpolation range selector (PIRS) and a variable successive approximation register (VSAR) algorithm are adopted to resolve the boundary switching and harmonic locking problems of conventional digital DLLs. The proposed digital DLL, implemented in a $0.18-{\mu}m$ CMOS process, occupies an active area of $0.19mm^2$ and operates over a wide frequency range of 0.15-1.5 GHz. The DLL dissipates a power of 11.3 mW from a 1.8 V supply at 1 GHz. The measured peak-to-peak output clock jitter is 24 ps (effective pk-pk jitter = 16.5 ps) with an input clock jitter of 7.5 ps at 1.5 GHz. The delay resolution is only 2.2 ps.

A New Optimal AVR Parameter Tuning Method Using On-Line Excitation Control System Model with SQP Method (온라인 여자제어시스템 모델과 SQP법을 이용한 AVR의 파라미터 튜닝 방법에 관한 연구)

  • Kim, Jung-Mun;Mun, Seung-Il
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.3
    • /
    • pp.118-126
    • /
    • 2002
  • AVR parameter tuning for voltage control of generators has generally been done with the off-line open-circuit model of the synchronous generator. When the generator is connected on-line and operating with load the AVR operates in an entirely different environment from the open-circuit conditions. This paper describes a new method for AVR parameter tuning for on line conditions using SQP(Sequential Quadratic Programming) meshed with frequency response characteristics of linearized on-line system model. As the proposed method uses the un - line system model the tuned parameter sets show more optimal behavior in the on-line operating conditions. furthermore, as this method considers the performance indices that are needed for stable operation as constraints, AVR parameter sets that are tuned by this method could guarantee the stable performance, too.

A Study on the Design of the Automatic Cutting Mechanism of the Perforation Pipes in an Automobile Muffler (차량 소음기용 다공파이프 자동절단 메커니즘 설계에 관한 연구)

  • Kim, Yong-Seok;Jeong, Chan-Se;Yang, Soon-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.350-356
    • /
    • 2011
  • In this paper, we proposed the automatic cutting mechanism of the perforation pipes in an automobile muffler. This cutting mechanism makes continuous work possible, because it performs the batch work via the sequential operation of loading, feeding, cutting, and discharging. The proposed cutting mechanism consists of the frame unit, escape unit, turning unit, feeding unit, vision system, clamping unit, spindle/cutting unit and cooling unit. And, these mechanisms have been modularized through mechanical, dynamical and structural optimized design using the SMO (SimDesigner Motion) analysis module. Also, the virtual prototype was carried out using the 3-D CAD program. The cutting process cycle is performed in the order of loading, vision processing, feeding, clamping, cutting and discharging. And the cycle time for cutting one piece was designed to be completed in four seconds.

A Fault Detection and Isolation Method for Ammunition Transport Automation System (탄약운반 자동화 시스템의 고장 검출 및 분류 기법)

  • Lee, Seung-Youn;Kang, Kil-Sun;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.10
    • /
    • pp.880-887
    • /
    • 2005
  • This paper presents a fault diagnosis(detection and isolation) approach for the Ammunition Transport Automation system(ATAS). Due to limited time and information available during its cyclic operation, the on-line fault detection algorithm consists of sequential test logics referring to the normal states, which can be considered as a kind of expert system. If a failure were detected, the off-line isolation algorithm finds the fault location through trained ART2 neural network. By the results of simulations and some on-line field test, it has been shown that the presented approach is effective enough and applicable to related automation systems.

Analysis of characteristics for clamping voltage fellowing the application of element for preventing the short circuit of Metal Oxide Varistors for ZnO (ZnO 계열의 금속산화물 바리스터의 단락 방지용 소자 적용에 따른 제한전압 특성 분석)

  • Jeong, Tae-Hoon;Choi, Sung-Wook;Jeong, Je-Seon;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1531-1532
    • /
    • 2006
  • Recently, the natural environment changes drastically, and the frequency of occurrence for lightning has gradually been increased. Such lightning delivers high volume of energy along the power line and communication line to the equipment in use. The high volume of energy arising from the lightning surge develops in fast velocity to destroy the facilities in power source and many other facilities in operation in sequential destruction with vast energy. In this thesis, the analysis on the change of clamping voltage characteristics by the contact resistance and lead inductance by using several case studies through the application of element for preventing the short circuit of Metal Oxide Varistor for ZnO.

  • PDF

20 MHz-3 GHz Programmable Chirp Spread Spectrum Generator for a Wideband Radio Jamming Application

  • Kim, Sun-Ryoul;Ryu, Hyuk;Ha, Keum-Won;Kim, Jeong-Geun;Baek, Donghyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.771-776
    • /
    • 2014
  • In this paper, an agile programmable chirp spread spectrum generator for wideband frequency-jamming applications from 20 MHz to 3 GHz is proposed. A frequency-mixing architecture using two voltage-controlled oscillators is used to achieve a wideband operating frequency range, and the direct digital synthesizer (DDS)-based chirping method with a two-point modulation technique is employed to provide a programmable and consistent chirp bandwidth. The proposed signal generator provides the various programmable FM signals from 20 MHz to 3 GHz with a modulation bandwidth from 0 to 400 MHz. The prototype successfully demonstrates arbitrary sequential jamming operation with a fast band-to-band hopping time of < 10 ${\mu}sec$.

Development of an Operation Software for the ASRI-FMS/CIM (ASRI-FMS/CIM 을 위한 운용 소프트웨어의 구축)

  • Park, Chan-Kwon;Park, Jin-Woo;Kang, Suk-Ho
    • IE interfaces
    • /
    • v.6 no.2
    • /
    • pp.53-65
    • /
    • 1993
  • This paper deals with the development of a software module for production planning and scheduling activities of an existing Flexible Machining and Assembly System (FMAS). The Production Planning Module uses the hierarchical and sequential scheme based on "divide and conquer" philosophy. In this module, routes are determined based on the production order, orders are screened, tools are allocated, and order adjustments are executed according to the allocated tools. The Scheduling Module allocates the resources, determines the task priority and the start and completion times of tasks. Re-scheduling can be done to handle unforeseen situations such as lumpy demands and machine breakdowns. Since all modules are integrated with a central database and they interface independently, it is easy to append new modules or update the existing modules. The result of this study is used for operating the real FMAS consisting of a machining cell with 2 domestic NC machines and a part feeding robot, an assembly cell with a conveyor and 3 robots, an inspection cell, an AGV, an AS/RS, and a central control computer.

  • PDF

A Study on Adjustment Optimization for Dynamic Balancing Test of Helicopter Main Rotor Blade (헬리콥터 주로터 블레이드 동적밸런싱 시험을 위한 조절변수 최적화 연구)

  • Song, KeunWoong;Choi, JongSoo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.6_spc
    • /
    • pp.736-743
    • /
    • 2016
  • This study describes optimization methods for adjustment of helicopter main rotor tracking and balancing (RTB). RTB is a essential process for helicopter operation and maintenance. Linear and non-linear models were developed with past RTB test results for estimation of RTB adjustment. Then global and sequential optimization methods were applied to the each of models. Utilization of the individual optimization method with each model is hard to fulfill the RTB requirements because of different characteristics of each blade. Therefore an ensemble model was used to integrate every estimated adjustment result, and an adaptive method was also applied to adjustment values of the linear model to update for next estimations. The goal of this developed RTB adjustment optimization program is to achieve the requirements within 2 run. Additional tests for comparison of weight factor of the ensemble model are however necessary.