For effective response surface modeling during sequential approximate optimization (SAO), the normalized and the augmented D-optimality criteria are presented. The normalized D-optimality criterion uses the normalized Fisher information matrix by its diagonal terms in order to obtain a balance among the linear-order and higher-order terms. Then, it is augmented to directly include other experimental designs or the pre-sampled designs. This augmentation enables the trust region managed sequential approximate optimization to directly use the pre-sampled designs in the overlapped trust regions in constructing the new response surface models. In order to show the effectiveness of the normalized and the augmented D-optimality criteria, following two comparisons are performed. First, the information surface of the normalized D-optimal design is compared with those of the original D-optimal design. Second, a trust-region managed sequential approximate optimizer having three D-optimal designs is developed and three design problems are solved. These comparisons show that the normalized D-optimal design gives more rotatable designs than the original D-optimal design, and the augmented D-optimal design can reduce the number of analyses by 30% - 40% than the original D-optimal design.
Nowadays, it is performed actively to optimize by using an approximate model. This is called the approximate optimization. In addition, the sequential approximate optimization (SAO) is the repetitive method to find an optimum by considering the convergence of an approximate optimum. In some recent studies, it is proposed to increase the fidelity of approximate models by applying the sequential sampling. However, because the accuracy and efficiency of an approximate model is directly connected with the design area and the termination criteria are not clear, sequential sampling method has the disadvantages that could support an unreasonable approximate optimum. In this study, the SAO is executed by using trust region, Kriging model and Optimal Latin Hypercube design (OLHD). Trust region is used to guarantee the convergence and Kriging model and OLHD are suitable for computer experiment. finally, this SAO method is applied to various optimization problems of highly nonlinear mathematical functions. As a result, each approximate optimum is acquired and the accuracy and efficiency of this method is verified by comparing with the result by established method.
A general approximate optimization technique by sequential design domain(SDD) did not save response values for getting an approximate function in each step. It has a disadvantage at aspect of an expense. In this paper, previous response values are recycled for constructing an approximate function. For this reason, approximation function is more accurate. Accordingly, even if we did not determine move limit, a system is converged to the optimal design. Size and shape optimization using approximate optimization technique is carried out with SDD. Algorithm executing Pro/Engineer and ANSYS are automatically adopted in the approximate optimization program by SDD. Convergence criterion is defined such that optimal point must be located within SDD during the three steps. The PLBA(Pshenichny-Lim-Belegundu-Arora) algorithm is used to solve approximate optimization problems. This algorithm uses the second-order information in the direction finding problem and uses the active set strategy.
Communications for Statistical Applications and Methods
/
제6권1호
/
pp.207-220
/
1999
In this paper, some of the issue about a group sequential method are considered in the Bayesian context. The continuous time optimal stopping boundary can be used to approximate the optimal stopping boundary for group sequential designs. The exact stopping boundary for group sequential design is obtained by using the backward induction method and is compared with the continuous optimal stopping boundary and the corrected continuous stopping boundary.
The shape of plate-fin type heat sink is numerically optimized to acquire the minimum pressure drop under the required temperature rise. In constrained nonlinear optimization problems of thermal/fluid systems, three fundamental difficulties such as high computational cost for function evaluations (i.e., pressure drop and thermal resistance), the absence of design sensitivity information, and the occurrence of numerical noise are commonly confronted. Thus, a sequential approximate optimization (SAO) algorithm has been introduced because it is very hard to obtain the optimal solutions of fluid/thermal systems by means of gradient-based optimization techniques. In this study, the progressive quadratic response surface method (PQRSM) based on the trust region algorithm, which is one of sequential approximate optimization algorithms, is used for optimization and the heat sink is optimized by combining it with the computational fluid dynamics (CFD).
본 논문에서는 주어진 손실함수에 대한 근사최적베이즈축차실험방법을 유도한다. 근사최적베이즈축차실험방법을 Pocock 실험방법, O'Brien and Fleming 실험방법과 ASN(average sample size) 함수와 베이즈 위험면에서 비교하기 위하여 몬테칼로(Monte-Carlo) 방법을 사용한다. 그룹축차실험방법에서 그룹 때문에 빚어지는 정보의 손실비율과 베이즈효율의 개념을 소개하고 여러 가지 다른 그룹 크기에 따른 정보의 손실을 측정한다.
For effective construction of second-order response surface models, an efficient quad ratic approximation method is proposed in the context of trust region model management strategy. In the proposed method, although only the linear and quadratic terms are uniquely determined using 2n+1 design points, the two-factor interaction terms are mathematically updated by normalized quasi-Newton formula. In order to show the numerical performance of the proposed approximation method, a sequential approximate optimizer is developed and solves a typical unconstrained optimization problem having 2, 6, 10, 15, 30 and 50 design variables, a gear reducer system design problem and two dynamic response optimization problems with multiple objectives, five objectives for one and two objectives for the other. Finally, their optimization results are compared with those of the CCD or the 50% over-determined D-optimal design combined with the same trust region sequential approximate optimizer. These comparisons show that the proposed method gives more efficient than others.
본 연구에서는 순차 설계영역 (SDD: sequential Design Domain) 개념을 사용한 GUI(Graphic User Interface)환경 프로그램을 개발하였다. 본 프로그램은 상용프로그램인 ANSYS와 최적설계 프로그램인 PLBA(Pshenichny-Lim-Belegundu-Arora)를 연결하고 비주얼 베이직을 이용하여 GUI환경에서 사용자가 초기값과 입력파일을 작성하고 결과를 확인할 수 있도록 하였다. 프로그램의 신뢰도를 검증하기 위해서 3부재 및 5부재 트러스 구조물을 수치예제로 선정하여 해석하였다.
A micro-pressure wave is generated by the high-speed train which enters a tunnel, and it causes explosive noise and vibration at the exit. It is known that train speed, train-tunnel area ratio, nose slenderness and nose shape mainly influence on generating micro-pressure wave. So it is required to minimize it by searching optimal values of such train shape factors and tunnel condition. In this study, response surface model, one of approximation models, is used to perform optimization effectively and analyze sensitivity of design variables. Owen's randomized orthogonal array and D-optimal Design are used to construct response surface model. In order to increase accuracy of model, stepwise regression is selected. Finally SQP(Sequential Quadratic Programming) optimization algorithm is used to minimize the maximum micro-pressure wave by using built approximation model.
기계부품의 설계는 초기 설계, 해석, 성능 평가의 반복 과정을 통하여 수행된다. 설계자는 각 과정에서 특성에 맞는 프로그램을 사용하고 있다. 본 연구에서는 순차 설계 영역을 이용한 형상최적화를 수행하였다. 순차 설계영역의 근사함수를 구하기 위하여 Pro/Engineer 와 ANSYS 실행의 자동화를 수행하였다. 전체 설계영역을 근사식으로 표현하기에는 어려움이 있다. 정확도가 높은 근사식을 만들기 위하여 순차설계영역을 설정하여 각 단계에서 수렴한 해로 이동량을 결정하고, 두 번 연속하여 순차설계 영역에 존재하면 수렴조건을 만족하는 것으로 하였다. 각 단계의 해는 순차이차 계획법인 PLBA(Pshenichny-Lim-Belegundu Arora)알고리즘을 이용하여 구하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.