Communications for Statistical Applications and Methods
/
제8권1호
/
pp.271-279
/
2001
Sequential pattern discovery is one of main interests in web usage mining. the technique of sequential pattern discovery attempts to find inter-session patterns such that the presence of a set of items is followed by another item in a time-ordered set of server sessions. In this paper, a tree-based sequential pattern finding method is proposed in order to discover navigation patterns in server sessions. At each learning process, the suggested method learns about the navigation patterns per server session and summarized into the modified Rymon's tree.
순차 패턴 탐사 기법은 순서를 갖는 패턴들의 집합 중에 빈발하게 발생하는 패턴을 탐사하는 기법이다. 순차 패턴 탐사 분야 중에 동적 가중치 순차 패턴 탐사는 가중치가 시간에 따라 변화하는 컴퓨팅 환경에 적용 가능한 탐사 기법으로 동적인 가중치 변화를 탐색 과정에 적용하여 다양한 환경에서 활용 가능하다. 이 논문에서는 다양한 순차 데이터가 들어오는 스트림 환경에서 동적 가중치를 적용하여 빈발한 이벤트들을 탐사하는 새로운 순차 패턴 탐사 기법을 제안한다. 제안하는 기법은 시간 순서에 의한 상대적인 동적 가중치를 사용하여 탐색해야 하는 후보 패턴을 줄여주고 해시 구조를 통한 데이터 입출력으로 빈발한 순차 패턴을 빠르게 탐사할 수 있다. 이 기법을 사용하면 기존 가중치를 적용하는 방식보다 메모리 사용과 처리 시간을 줄여줘 매우 효율적이다. 제안하는 기법은 다른 가중치 순차 패턴 탐사 기법과의 비교를 통해 동적 가중치 탐사 기법의 중요성을 보인다.
일반적인 순차패턴 마이닝에서는 분석 대상 데이터 집합에 포함되는 구성요소의 발생 순서만을 고려하며, 따라서 단순 순차패턴은 쉽게 찾을 수 있는 반면 실제 응용 분야에서 널리 활용될 수 있는 관심도가 큰 순차패턴을 탐색하는데 한계가 있다. 이러한 단점을 보완하기 위한 대표적인 연구 주제들 중의 하나가 가중치 순차패턴 탐색이다. 가중치 순차패턴 탐색에서는 관심도가 큰 순차패턴을 얻기 위해서 구성요소의 단순 발생 순서 뿐만 아니라 구성요소의 가중치를 추가로 고려한다. 본 논문에서는 발생 간격에 기반 한 순차패턴 가중치 부여 기법 및 이를 활용한 순차 데이터 스트림에 대한 가중치 순차패턴 탐색 방법을 제안한다. 발생 간격 기반 가중치는 사전에 정의된 별도의 가중치 정보를 필요로 하지 않으며 순차정보를 구성하는 구성요소들의 발생 간격으로부터 구해진다. 즉, 순차패턴의 가중치를 구하는데 있어서 구성요소의 발생순서와 더불어 이들의 발생 간격을 고려하며, 따라서 보다 관심도가 크고 유용한 순차패턴을 얻는데 도움이 된다. 한편, 근래 대부분의 컴퓨터 응용 분야에서는 한정적인 데이터 집합 형태가 아닌 데이터 스트림 형태로 정보를 발생시키고 있다. 이와 같은 데이터 생성 환경의 변화를 고려하여 본 논문에서는 순차 데이터 스트림을 마이닝 대상으로 고려하였다.
최근 음성인식에서는 잡음환경에서 좀 더 신뢰성 있는 결과를 얻기 위해 인식 결과 도출 단계에서 여러 가지 정보의 내용들을 융합하거나 이전 인식 결과의 후처리를 통하여 성능을 향상시키는 방법들이 연구되고 있다. 본 논문에서는 잡음 환경에서의 인식률 하락을 보완하기 위해 개인 모바일 기기를 위한 음성 명령어 인식에서 사용자의 사용패턴과 문맥 정보를 사용하는 방법을 제안한다. 기본 인식 결과를 보정하기 위해서 현재 명령어를 발화하기 이전에 사용자가 사용한 순차적 명령어 패턴을 사용하였다. 또한 문맥 정보를 위해서는 사용중인 기기의 현재 기능과 발화된 명령어간의 연관성을 사용하였다. 실험을 통해 제안한 방법이 기본 인식 시스템에서 발생한 오인식의 약 50%를 수정하였음을 보였으며 이로써 제안한 방법의 타당성을 검증하였다.
순차 패턴 탐색은 데이터 마이닝의 주요 기법 중의 하나로서 웹기반 시스템, 전자상거래, 생물정보학 및 USN 환경 등과 같은 여러 컴퓨터 응용 분야에서 생성되는 데이터를 효율적으로 분석하기 위하여 널리 활용되고 있다. 한편 이들 응용 분야에서 생성되는 정보들은 근래들어 한정적인 데이터 집합이 아닌 구성요소가 지속적으로 생성되는 데이터 스트림 형태로 생성되고 있다. 이러한 상황을 고려하여 데이터 스트림에서 순차패턴 탐색에 대한 연구들도 활발히 진행되고 있다. 하지만 이전의 연구들은 주로 분석 대상 데이터 스트림에서 단순 순차패턴을 구하는 과정에서 마이닝 수행 시간이나 메모리 사용량 등을 줄이는데 초점을 맞추고 있으며, 따라서 해당 데이터 스트림의 특성을 효율적으로 표현할 수 있는 보다 중요하고 의미있는 패턴들을 탐색하기 위한 연구는 거의 진행되지 못하고 있다. 본 논문에서는 데이터 스트림에서 보다 의미있는 순차패턴을 탐색하기 위한 방법으로 구성요소의 발생 간격 제한 조건을 활용한 빈발 순차패턴 탐색 방법을 제안한다. 먼저 발생 간격 정의 기준 및 발생 간격제한 빈발 순차패턴의 개념을 제시하고, 이어서 데이터 스트림에서 발생 간격 제한 조건을 적용하여 빈발 순차패턴을 효율적으로 탐색할 수 있는 마이닝 방법을 제안한다.
웹 관련 기술의 발달 및 스마트폰과 같은 지능형 모바일 서비스 기기의 사용 증가로 인해 오늘날 많은 분야에서 다양한 웹기반 서비스들이 널리 활용되고 있다 이러한 환정에서 개인화 및 지능화된 웹 서비스를 제공하기 위한 연구들이 활발히 진행되고 있으며, 웹 서비스 이용 기록으로부터 생성되는 웹 클릭 스트림에 대한 분석 기술은 관련 기술 중 핵심 기술의 하나이다. 본 논문에서는 순차정보 형태로 발생되는 웹 클릭 스트림에 대한 효율적 분석을 위해서 데이터 스트림 처리에 대한 기본적인 요구사항을 만족하면서 정제된 결과를 얻기 위한 순차패턴 마이닝 방법을 제시한다. 이를 위해서 먼저 순차패턴에 포함되는 단위항목들의 단순 발생 순서뿐만 아니라 발생 시간 정보를 추가로 활용하는 시간 간격 제한 관심 순차패턴을 정의하고, 이어서 웹 클릭 스트림과 같은 데이터 스트림에서 이를 효율적으로 탐색하기 위한 마이닝 방법을 제안한다. 해당 연구 결과는 웹 클릭 스트림뿐만 아니라 전자상거래, 생물정보학 및 USN 환경 등과 같이 데이터 스트림 형태로 정보를 발생시키는 여러 컴퓨터 용용 분야에서 유용하게 활용될 수 있을 것이다.
데이터 스트림에 대한 기존의 패턴 분석 알고리즘은 대부분 속도 향상과 효율적인 메모리 사용에 대하여 연구되어 왔다. 그러나 기존의 연구들은 새로운 패턴을 가진 데이터 스트림이 입력되었을 경우, 이 전에 분석된 패턴을 버리고 다시 패턴을 분석하여야 한다. 이러한 방법은 데이터의 실시간적인 패턴 분석을 필요로 하는 실제 환경에서는 많은 속도와 계산 비용이 소모된다. 본 논문에서는 끊임없이 입력되는 데이터 스트림의 패턴을 실시간으로 분석하는 방법을 제안한다. 이 것은 먼저 빠르게 패턴을 분석하고 그 다음부터는 이전에 분석된 패턴을 효율적으로 갱신하여 실시간적인 패턴을 얻어내는 방법이다. 데이터 스트림이 입력되면 시간 기반 윈도우로 나누어 여러 개의 순차들을 생성한다. 그리고 생성된 순차들의 정보는 해시 테이블에 입력되어 정해진 개수의 순차가 해시 테이블에 채워질 때마다 해시 테이블에서 패턴을 분석해 낸다. 이렇게 분석된 패턴은 패턴 트리를 형성하게 되고, 이 후에 새로 분석된 패턴들은 이 패턴 트리 안의 패턴 별로 갱신하여 현재 패턴을 유지하게 된다. 새로운 패턴 추가를 위해 패턴을 분석할 때 이전에 이미 발견된 패턴이 Suffix로 나올 수 있다. 그러면 패턴 트리에서 이 전 패턴으로의 포인터를 생성하여 중복되는 패턴 분석으로 인한 계산 시간의 낭비를 방지한다. 그리고 FIFO방법을 사용하여 오랫동안 입력이 안 된 패턴을 손쉽게 제거한다. 패턴이 조금씩 바뀌는 데이터 스트림 환경에서 RSP-DS가 기존의 알고리즘보다 우수하다는 것을 성능 평가를 통하여 증명하였다. 또한 패턴 분석을 수행할 데이터 순차의 개수와 자주 등장하는 데이터를 판별하는 기준을 조절하여 성능의 변화를 살펴보았다.
웹 사용 마이닝은 데이터마이닝을 바탕으로 사용자의 로그 파일 정보를 이용하여 웹이 이용되는 패턴을 발견한다. 이를 이용하여 웹을 개선하여 사용자들이 보다 빨리 원하는 내용을 검색할 수 있도록 할 수 있으며 시스템 관리자에게는 효율적인 웹 구조를 인한 정보를 제공할 수 있다. 웹 사용 마이닝에서 사용하는 데이터는 성형화되어 있지 않으며 웹 사용 패턴을 분석하는데 방해가 되는 잡음 데이터까지 포함하고 있다. 이것은 기존에 개발된 여러 데이터마이닝 기법을 적용하는데 어려움으로 작용한다. 이러한 어려움을 해결하기 위해 본 논문에서는 새로운 방법을 도입한 SPMiner을 .제안한다. SPMiner는 웹의 구조를 이용하여 로그 파일의 전처리 과정을 줄이며 사용자의 탐색 패턴 분석을 효율적으로 수행 할 수 있는 시스템이다. SPMiner는 WebTree 에이전트를 이용하여 웹 사이트 구조를 분석하여 WebTree를 생성하고 사용자 로그 파일을 분석하여 각 웹 페이지의 사용빈도에 대한 정보를 추출한다. WebTree와 로그 파일에서 추출된 웹 페이지에 대한 정보는 SPMiner에 의해 패턴을 분석할 퍼 이용될 수 있는 형태인 WebTree$^{+}$로 병합된다 WebTree$^{+}$는 패턴 발견을 쉽게 해주며 사용자에게 추천할 정보나 웹 페이지를 능동적으로 추천할 수 있게 만들어 준다.
대용량 웹 데이터베이스로부터 필요한 관련 정보를 탐색하고, 다양한 형태의 정보로부터 지식을 창출하는 일은 매우 어려운 일이다. 본 논문은 복잡하고 다양한 형태의 패턴이 존재하고, 연속된 입력을 갖는 웹 데이터베이스에서 발생되는 빈발 패턴들을 효과적으로 저장할 수 있는 FP-Tree를 기반으로 하여 변화된 정보들을 능동적으로 유지하고 새로운 정보들에 U해 FP-Tree를 재구성하여 웹 페이지에 대한 유용한 패턴 정보와 사용자의 웹 사용 패턴 분석을 용이하게 한다. 그 결과 새로이 발견된 웹 사용 패턴들을 통해 웹 페이지의 구조적 정보와 구조적 연판 정보를 효과적으로 얻을 수 있다.
Until now, research on consumers' purchasing behavior has primarily focused on psychological aspects or depended on consumer surveys. However, there may be a gap between consumers' self-reported perceptions and their observable actions. In response, this study aimed to investigate consumer purchasing behavior utilizing a big data approach. To this end, this study investigated the purchasing patterns of fashion items, both online and in retail stores, from a data-driven perspective. We also investigated whether individual consumers switched between online websites and retail establishments for making purchases. Data on 516,474 purchases were obtained from fashion companies. We used association rule analysis and K-means clustering to identify purchase patterns that were influenced by customer loyalty. Furthermore, sequential pattern analysis was applied to investigate the usage patterns of online and offline channels by consumers. The results showed that high-loyalty consumers mainly purchased infrequently bought items in the brand line, as well as high-priced items, and that these purchase patterns were similar both online and in stores. In contrast, the low-loyalty group showed different purchasing behaviors for online versus in-store purchases. In physical environments, the low-loyalty consumers tended to purchase less popular or more expensive items from the brand line, whereas in online environments, their purchases centered around items with relatively high sales volumes. Finally, we found that both high and low loyalty groups exclusively used a single preferred channel, either online or in-store. The findings help companies better understand consumer purchase patterns and build future marketing strategies around items with high brand centrality.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.