• Title/Summary/Keyword: Sequential Optimization

Search Result 442, Processing Time 0.026 seconds

Study of Shape Optimization for Automobile Lock-up Clutch Piston Design with B-spline Curve Fitting and Simplex Method (B-spline Curve Fitting 과 심플렉스법을 적용한 자동차 록업클러치 피스톤 형상최적설계에 관한 연구)

  • Kim, Choel;Hyun, Seok-Jeong;Son, Jong-Ho;Shin, Se-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1334-1339
    • /
    • 2003
  • An efficient method is developed for the shape optimization of 2-D structures. The sequential linear programming is used for minimization problems. Selected set of master nodes are employed as design variables and assigned to move towards the normal direction. After adapting the nodes on the design boundary, the B-spline curves and mesh smoothing schemes are used to maintain the finite element in good quality. Finally, a numerical implementation of optimum design of an automobile torque converter piston subjected to pressure and centrifugal loads is presented. The results shows additional weight up to 13% may be saved after the shape optimization.

  • PDF

Minimum cost design of RCMRFs based on consistent approximation method

  • Habibi, Alireza;Shahryari, Mobin;Rostami, Hasan
    • Computers and Concrete
    • /
    • v.26 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • In this paper, a procedure for automated optimized design of reinforced concrete frames has been presented. The procedure consists of formulation and solution of the design problem in the form of an optimization problem. The minimization of total cost of R/C frame has been taken as the objective of optimization problem. In this research, consistent approximation method is applied to explicitly formulate constraints and objective function in terms of the design variables. In the presented method, the primary optimization problem is replaced with a sequence of explicit sub-problems. Each sub-problem is efficiently solved using the Sequential Quadratic Programming (SQP) method. The proposed method is demonstrated through a four-story frame and an eight-story frame, and the optimum results are compared with those in the available literature. It is shown that the proposed method can be easily applied to obtain rational, reliable, economical and practical designs for Reinforced Concrete Moment Resisting Frames (RCMRFs) while it is converged after a few analyses.

Approximate Optimization of High-speed Train Shape and Tunnel Condition to Reduce the Micro-pressure Wave (미기압파 저감을 위한 고속전철 열차-터널 조건의 근사최적설계)

  • Kim, Jung-Hui;Lee, Jong-Soo;Kwon, Hyeok-Bin
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1023-1028
    • /
    • 2004
  • A micro-pressure wave is generated by the high-speed train which enters a tunnel, and it causes explosive noise and vibration at the exit. It is known that train speed, train-tunnel area ratio, nose slenderness and nose shape mainly influence on generating micro-pressure wave. So it is required to minimize it by searching optimal values of such train shape factors and tunnel condition. In this study, response surface model, one of approximation models, is used to perform optimization effectively and analyze sensitivity of design variables. Owen's randomized orthogonal array and D-optimal Design are used to construct response surface model. In order to increase accuracy of model, stepwise regression is selected. Finally SQP(Sequential Quadratic Programming) optimization algorithm is used to minimize the maximum micro-pressure wave by using built approximation model.

  • PDF

A study on Reduction of Cogging Torque for BLDC Motor Using Response Surface Methodology Optimization (반응표면방법론을 이용한 BLDC전동기의 코깅토크 저감에 관한 연구)

  • Kim, Yeong-Gyun;Lee, Geun-Ho;Hong, Jeong-Pyo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.2
    • /
    • pp.55-60
    • /
    • 2002
  • This paper presents an optimization procedure by using Response Surface Methodology(RSM) to determine design parameters for reducing cogging torque. RSM is achieved through using the experimental design method in combination with Finite Element Method and adapted to make analytical model for a complex problem considering a lot of interaction of these parameters. Sequential Quadratic Problem (SQP) method is used to solve the relsulting of constrained nonlinear optimization problem.

Structural Design of Piezoelectric Actuator Considering Polarization Direction and Continuous Approximation of Material Distribution (분극방향과 재료분포의 연속적 근사방법을 고려한 압전형 액추에이터의 구조설계)

  • Lim, Young-Seok;Yoo, Jeong-Hoon;Min, Seung-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.9 s.252
    • /
    • pp.1102-1109
    • /
    • 2006
  • In this paper, the polarization of piezoelectric materials is considered to improve actuation since the piezoelectric polarization has influences on the performance of the actuator. The topology design of compliant mechanism can be formulated as an optimization problem of material distribution in a fixed design domain and continuous approximation of material distribution (CAMD) method has demonstrated its effectiveness to prevent the numerical instabilities in topology optimization. The optimization problem is formulated to maximize the mean transduction ratio subject to the total volume constraints and solved using a sequential linear programming algorithm. The effect of CAMD and the performance improvement of actuator are confirmed through Moonie actuator and PZT suspension design.

Numerical Shape Optimization for Plate-Fin Type Heat Sink (평판-휜형 방열판의 수치적 형상최적화)

  • 김형렬;박경우;최동훈
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.3
    • /
    • pp.293-302
    • /
    • 2004
  • In this study the optimization of plate-fin type heat sink for the thermal stability is peformed numerically. The optimum design variables are obtained when the temperature rise and the pressure drop are minimized simultaneously. The flow and thermal fields are predicted using the finite volume method and the optimization is carried out by using the sequential quadratic programming (SQP) method which is widely used in the constrained non-linear optimization problem. The results show that when the temperature rise is less than 34.6K, the optimal design variables are as follows; B$_1$=2.468mm, B$_2$=1.365mm, and t=10.962mm. The Pareto optimal solutions are also presented for the pressure drop and the temperature rise.

HYPO-CONVERGENCE OF SEQUENCES OF FUZZY SETS AND MAXIMIZATION

  • Tortop, Sukru;Dundar, ErdInC
    • Honam Mathematical Journal
    • /
    • v.44 no.3
    • /
    • pp.461-472
    • /
    • 2022
  • In optimization theory, hypo-convergence is considered as an effective tool by providing the convergence of supremum values under some conditions. This feature makes it different from other types of convergence. Therefore, we have defined the hypo-convergence of a sequence of fuzzy sets due to the increasing interest in fuzzy set theory in recent years. After giving a theoretical framework, we deal with the optimization process by using a sequential characterization of hypo-convergence of sequence of fuzzy sets. Since the maximization process in optimization theory is beyond the presence of hypo-convergence, we give some conditions to satisfy the convergence of supremum values. Furthermore, we show how sequence of fuzzy sets and fuzzy numbers differ in the convergence of the supremum values.

Sizing Optimization of CFRP Lower Control Arm Considering Strength and Stiffness Conditions (강도 및 강성 조건을 고려한 탄소섬유강화플라스틱(CFRP) 로어 컨트롤 아암의 치수 최적설계)

  • Lim, Juhee;Doh, Jaehyeok;Yoo, SangHyuk;Kang, Ohsung;Kang, Keonwook;Lee, Jongsoo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.4
    • /
    • pp.389-396
    • /
    • 2016
  • The necessity for environment-friendly material development has emerged in the recent automotive field due to stricter regulations on fuel economy and environmental concerns. Accordingly, the automotive industry is paying attention to carbon fiber reinforced plastic (CFRP) material with high strength and stiffness properties while the lightweight. In this study, we determine a shape of lower control arm (LCA) for maximizing the strength and stiffness by optimizing the thickness of each layer when the stacking angle is fixed due to the CFRP manufacturing problems. Composite materials are laminated in the order of $0^{\circ}$, $90^{\circ}$, $45^{\circ}$, and $-45^{\circ}$ with a symmetrical structure. For the approximate optimal design, we apply a sequential two-point diagonal quadratic approximate optimization (STDQAO) and use a process integrated design optimization (PIDO) code for this purpose. Based on the physical properties calculated within a predetermined range of laminate thickness, we perform the FEM analysis and verify whether it satisfies the load and stiffness conditions or not. These processes are repeated for successive improved objective function. Optimized CFRP LCA has the equivalent stiffness and strength with light weight structure when compared to conventional aluminum design.

A Study on the Expressive Factors of Exhibition Space (전시공간의 표현요소 연구)

  • 김준호
    • Proceedings of the Korea Society of Design Studies Conference
    • /
    • 2000.11a
    • /
    • pp.46-47
    • /
    • 2000
  • 전시공간에는 공간성과 시간성이 교차한다. 구조화된 공간은 시간적 인식 매커니즘으로 개별 시퀀스의 맥락적 합으로 인식된다. 그것은 마치 한편의 영화를 감상할 때나 전통 중국음식을 음미할 때에 잔상, 잔미의 연속적 롤 플레잉의 과정과 유사하다. (중략)

  • PDF