• 제목/요약/키워드: Sequential Learning Method

검색결과 94건 처리시간 0.031초

신경망을 이용한 원격탐사자료의 군집화 기법 연구 (Study on Application of Neural Network for Unsupervised Training of Remote Sensing Data)

  • 김광은;이태섭;채효석
    • Spatial Information Research
    • /
    • 제2권2호
    • /
    • pp.175-188
    • /
    • 1994
  • 본 연구에서는 최근 많은 분야데서 패턴인식을 위한 효과적인 기법으로 이용되고 있는 신경망 기법을 원격탐사자료의 군집화 기법으로서 적용하고자 하였다. 이를 위해 선택된 신경망 모델은 경쟁학습 신경망이며 이를 구성하는 각종 변수들을 재구성하여 원격탐사자료의 군집화를 위한 신경망모델을 설정하였다. 본 신경망을 이용한 군집화 기법은 항공기를 이용하여 획득된 원격탐사자료를 이용하여 순차적(sequential)군집화 기법 K 평균 군집화 기법과 비교되었다. 계산시간은 순차적 기법이나 K 평균기법에 비하여 더 많이 소요되나 정확도면에 있어서는 비교적 우수한 결과를 나타냈다.

  • PDF

ON LEARNING OF CNAC FOR MANIPULATOR CONTROL

  • Hwang, Heon;Choi, Dong-Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.653-662
    • /
    • 1989
  • Cerebellar Model Arithmetic Controller (CMAC) has been introduced as an adaptive control function generator. CMAC computes control functions referring to a distributed memory table storing functional values rather than by solving equations analytically or numerically. CMAC has a unique mapping structure as a coarse coding and supervisory delta-rule learning property. In this paper, learning aspects and a convergence of the CMAC were investigated. The efficient training algorithms were developed to overcome the limitations caused by the conventional maximum error correction training and to eliminate the accumulated learning error caused by a sequential node training. A nonlinear function generator and a motion generator for a two d.o.f. manipulator were simulated. The efficiency of the various learning algorithms was demonstrated through the cpu time used and the convergence of the rms and maximum errors accumulated during a learning process. A generalization property and a learning effect due to the various gains were simulated. A uniform quantizing method was applied to cope with various ranges of input variables efficiently.

  • PDF

ON LEARNING OF CMAC FOR MANIPULATOR CONTROL

  • 최동엽;황현
    • 한국기계연구소 소보
    • /
    • 통권19호
    • /
    • pp.93-115
    • /
    • 1989
  • Cerebellar Model Arithmetic Controller(CMAC) has been introduced as an adaptive control function generator. CMAC computes control functions referring to a distributed memory table storing functional values rather than by solving equations analytically or numerically. CMAC has a unique mapping structure as a coarse coding and supervisory delta-rule learning property. In this paper, learning aspects and a convergence of the CMAC were investigated. The efficient training algorithms were developed to overcome the limitations caused by the conventional maximum error correction training and to eliminate the accumulated learning error caused by a sequential node training. A nonlinear function generator and a motion generator for a two d. o. f. manipulator were simulated. The efficiency of the various learning algorithms was demonstrated through the cpu time used and the convergence of the rms and maximum errors accumulated during a learning process; A generalization property and a learning effect due to the various gains were simulated. A uniform quantizing method was applied to cope with various ranges of input variables efficiently.

  • PDF

Wi-Fi 핑거프린트 기반 실내 이동 경로 데이터 생성 방법 (Wi-Fi Fingerprint-based Indoor Movement Route Data Generation Method)

  • 윤창표;황치곤
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.458-459
    • /
    • 2021
  • 최근, 실내 위치 기반 서비스에서 정확한 서비스를 위해 Wi-Fi 핑거프린트 기반의 딥러닝 기술을 이용한 연구가 이루어지고 있다. 딥러닝 모델 중에서 과거의 정보를 기억할 수 있는 RNN 모델은 실내측위에서 연속된 움직임을 기억할 수 있어 측위 오차를 줄일 수 있다. 이때 학습 데이터로서 연속적인 순차 데이터를 필요로 한다. 그러나 일반적으로 Wi-Fi 핑거프린트 데이터의 경우 특정 위치에 대한 신호들만으로 관리되기 때문에 RNN 모델의 학습데이터로 사용이 부적절하다. 본 논문은 RNN 모델의 순차적인 입력 데이터의 생성을 위해 클러스터링을 통한 영역 데이터로 확장된 Wi-Fi 핑거프린트 데이터 기반 이동 경로의 예측을 통한 경로 생성 방법에 대해 제안한다.

  • PDF

정리정돈을 위한 Q-learning 기반의 작업계획기 (Tidy-up Task Planner based on Q-learning)

  • 양민규;안국현;송재복
    • 로봇학회논문지
    • /
    • 제16권1호
    • /
    • pp.56-63
    • /
    • 2021
  • As the use of robots in service area increases, research has been conducted to replace human tasks in daily life with robots. Among them, this study focuses on the tidy-up task on a desk using a robot arm. The order in which tidy-up motions are carried out has a great impact on the success rate of the task. Therefore, in this study, a neural network-based method for determining the priority of the tidy-up motions from the input image is proposed. Reinforcement learning, which shows good performance in the sequential decision-making process, is used to train such a task planner. The training process is conducted in a virtual tidy-up environment that is configured the same as the actual tidy-up environment. To transfer the learning results in the virtual environment to the actual environment, the input image is preprocessed into a segmented image. In addition, the use of a neural network that excludes unnecessary tidy-up motions from the priority during the tidy-up operation increases the success rate of the task planner. Experiments were conducted in the real world to verify the proposed task planning method.

단순화 조건법을 이용한 지질 연대 분야의 학습 자료 개발과 그 효과 (Development and Effect of Learning Materials of Earth Science Using Simplifying Condition Method)

  • 김종희;정희경;김상달
    • 한국지구과학회지
    • /
    • 제24권6호
    • /
    • pp.495-507
    • /
    • 2003
  • 본 연구는 정교화이론을 기초로 개발된 단순화 조건법을 적용하여 지구과학 교과의 지질연대 단원에서 지질 단면도 해석에 대한 학습자료를 개발하고 개발된 자료의 수업에서의 효과를 알아보는 것이다. 이를 위하여 고등학교 1학년 학생들을 대상으로, 단순화 조건법을 적용한 수업과 체제적 과제분석 결과를 바탕으로 개발된 자료를 적용한 수업과의 비교 실험을 실시하고 학습자의 자기주도적 학습특성과 과학성취도에 미치는 영향을 분석하였다 연구의 결과를 바탕으로 얻어진 결론으로는, 단순화 조건법을 이용한 수업은 다른 자료를 활용한 수업에 비하여 학생의 자기주도적 학습특성과 학업성취도에서 모두 긍정적인 영향을 미친 것으로 나타났다 이러한 연구의 결과는 단순화 조건법에 따라 개발된 자료를 활용한 수업에서 핵심과제(epitome)의 제시는 학생들에게 새롭고 복잡한 학습과제를 간단하고 의미 있게 하며 이를 기존의 지식들과 연결시켜주는 역할을 한 결과로 생각된다.

모멘트의 동적 변환에 의한 Kernel Relaxation의 성능과 RMSE (Performance and Root Mean Squared Error of Kernel Relaxation by the Dynamic Change of the Moment)

  • 김은미;이배호
    • 한국멀티미디어학회논문지
    • /
    • 제6권5호
    • /
    • pp.788-796
    • /
    • 2003
  • 본 논문에서는 순차적 학습 방법에서의 동적 모멘트를 제안한다. 동적 모멘트에서의 가변적인 모멘트를 이용하여 수렴 속도와 학습 성능을 향상시키며 회귀율에서도 이를 확인할 수 있다 제안된 학습 방법은 기존의 정적모멘트와는 달리 수렴 정도에 따라 현재의 학습에 과거의 학습률을 달리 반영하는 방법이다. 기존의 정적 상수로 정의된 모멘트가 전체 학습에 동등하게 영향을 주는 반면 제안된 동적모멘트를 이용한 학습 방법은 학습 수행에 따라 동적으로 모멘트를 변경함으로써 수렴 속도와 학습 성능을 효과적으로 제어할 수 있다. 이전의 분류문제와 회귀문제의 분리확인과는 달리 본 논문에서는 제안된 동적모멘트의 성능과 회귀율을 동시에 확인한다. 본 논문에서 사용한 회귀방법은 RMS 오류율을 사용하였으며 제안된 학습방법인 동적모멘트를 SVM(Support Vector Machine)의 순차 학습방법인 KA(Kernel Adatron)과 KR(Kernel Relaxation)에 적용하여 RMS 오류율을 확인하였다. 공정한 학습 성능 평가를 위해 신경망 분류기표준평가데이터인 SONAR 데이터를 이용하였으며 실험 결과 동적모멘트를 이용한 학습 성능과 수렴 속도 및 RMS 오류율이 정적모멘트를 이용한 학습방법보다 향상되었음을 확인하였다.

  • PDF

Q-learning을 이용한 이동 로봇의 실시간 경로 계획 (Real-Time Path Planning for Mobile Robots Using Q-Learning)

  • 김호원;이원창
    • 전기전자학회논문지
    • /
    • 제24권4호
    • /
    • pp.991-997
    • /
    • 2020
  • 강화학습은 주로 순차적인 의사 결정 문제에 적용되어 왔다. 특히 최근에는 신경망과 결합한 형태로 기존에는 해결하지 못한 분야에서도 성공적인 결과를 내고 있다. 하지만 신경망을 이용하는 강화학습은 현장에서 즉각적으로 사용하기엔 너무 복잡하다는 단점이 있다. 본 논문에서는 학습이 쉬운 강화학습 알고리즘 중 하나인 Q-learning을 이용하여 이동 로봇의 경로를 생성하는 알고리즘을 구현하였다. Q-table을 미리 만드는 방식의 Q-learning은 명확한 한계를 가지기 때문에 실시간으로 Q-table을 업데이트하는 실시간 Q-learning을 사용하였다. 탐험 전략을 조정하여 실시간 Q-learning에 필요한 학습 속도를 얻을 수 있었다. 마지막으로 실시간 Q-learning과 DQN의 성능을 비교하였다.

일개 간호대학생의 학습유형과 자기주도적 학습 (Learning Style and Self-directed Learning of Nursing Students at One University)

  • 박지원;방경숙
    • Perspectives in Nursing Science
    • /
    • 제7권1호
    • /
    • pp.36-42
    • /
    • 2010
  • Purpose: This study was done to identify the preferences for learning style and the degree of self-directed learning and influencing factors on it among nursing students working on a Bachelor of Science in a nursing program at Suwon. Methods: The study sample included 156 nursing students. A self-report questionnaire was used to assess the data. The data was analyzed using the SPSS/WIN program for descriptive and inferential statistics. Results: Most of the students preferred lectures rather than discussion or team projects as a teaching method. Students preferred deliberating, sensing, and the use of visuals for their learning style. In addition, they favored sequential learning over comprehensive learning. Self directed learning had better outcomes in 3rd and 4th year students than 1st or 2nd year students. Additionally, active learners and high achievers who had a good GPA showed higher self directed learning than the others. Conclusion: In order to maximize students' self-directed learning, study guidance will be necessary for freshmen and for some who experience difficulties in studying nursing courses. Nursing faculty members should pay close attention to facilitate student's self directed learning, and encourage more discussions in the classes.

  • PDF

학습클리닉프로그램이 학습부적응 아동의 인지처리양식에 미치는 효과 (The Effects of Learning Clinic Program on Cognitive Processing Styles for Learning Maladjusted Children)

  • 황미영;원효헌
    • 수산해양교육연구
    • /
    • 제29권3호
    • /
    • pp.909-919
    • /
    • 2017
  • The purpose of this study was to apply the learning clinic program to the maladjusted children to help the cognitive processing style, sense type and learning strategy. The results were as follows. First, the cognitive processing style of low-grade elementary school children is divided into the concept of sequential low-order style, which analyzes information sequentially and consecutively, concrete thinking style that processes real and direct information coming in from outside, and invisible principle or information. The abstract cognitive thinking style improved after the process before the program proceeded. However, There was no meaningful result in the simultaneous processing cognitive style which had excellent intuition and emotion and likes change. Second, the temporal lobe in which the linguistic activity is viewed, heard and spoken in the sensory type, the function of the occipital lobe in which the character or the language is processed is improved, but the function of the parietal lobe in moving and manipulating the body is not significant. Finally, factors that contribute to learning such as sincerity, learning initiative, study method, study habits, and concentration are helpful in learning and school life.