• 제목/요약/키워드: Sequential Learning Method

검색결과 94건 처리시간 0.032초

Tensile Properties Estimation Method Using Convolutional LSTM Model

  • Choi, Hyeon-Joon;Kang, Dong-Joong
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권11호
    • /
    • pp.43-49
    • /
    • 2018
  • In this paper, we propose a displacement measurement method based on deep learning using image data obtained from tensile tests of a material specimen. We focus on the fact that the sequential images during the tension are generated and the displacement of the specimen is represented in the image data. So, we designed sample generation model which makes sequential images of specimen. The behavior of generated images are similar to the real specimen images under tensile force. Using generated images, we trained and validated our model. In the deep neural network, sequential images are assigned to a multi-channel input to train the network. The multi-channel images are composed of sequential images obtained along the time domain. As a result, the neural network learns the temporal information as the images express the correlation with each other along the time domain. In order to verify the proposed method, we conducted experiments by comparing the deformation measuring performance of the neural network changing the displacement range of images.

SEQUENTIAL MINIMAL OPTIMIZATION WITH RANDOM FOREST ALGORITHM (SMORF) USING TWITTER CLASSIFICATION TECHNIQUES

  • J.Uma;K.Prabha
    • International Journal of Computer Science & Network Security
    • /
    • 제23권4호
    • /
    • pp.116-122
    • /
    • 2023
  • Sentiment categorization technique be commonly isolated interested in threes significant classifications name Machine Learning Procedure (ML), Lexicon Based Method (LB) also finally, the Hybrid Method. In Machine Learning Methods (ML) utilizes phonetic highlights with apply notable ML algorithm. In this paper, in classification and identification be complete base under in optimizations technique called sequential minimal optimization with Random Forest algorithm (SMORF) for expanding the exhibition and proficiency of sentiment classification framework. The three existing classification algorithms are compared with proposed SMORF algorithm. Imitation result within experiential structure is Precisions (P), recalls (R), F-measures (F) and accuracy metric. The proposed sequential minimal optimization with Random Forest (SMORF) provides the great accuracy.

Short-Term Load Forecasting Based on Sequential Relevance Vector Machine

  • Jang, Youngchan
    • Industrial Engineering and Management Systems
    • /
    • 제14권3호
    • /
    • pp.318-324
    • /
    • 2015
  • This paper proposes a dynamic short-term load forecasting method that utilizes a new sequential learning algorithm based on Relevance Vector Machine (RVM). The method performs general optimization of weights and hyperparameters using the current relevance vectors and newly arriving data. By doing so, the proposed algorithm is trained with the most recent data. Consequently, it extends the RVM algorithm to real-time and nonstationary learning processes. The results of application of the proposed algorithm to prediction of electrical loads indicate that its accuracy is comparable to that of existing nonparametric learning algorithms. Further, the proposed model reduces computational complexity.

Hellinger 엔트로피를 이용한 다차원 연속패턴의 생성방법 (Learning Multidimensional Sequential Patterns Using Hellinger Entropy Function)

  • 이창환
    • 정보처리학회논문지B
    • /
    • 제11B권4호
    • /
    • pp.477-484
    • /
    • 2004
  • 데이터 마이닝에서 연속패턴(sequential pattern) 생성기술은 시차를 두고 발생한 사건들에 대하여 잠재해있는 패턴을 발견하는 기술을 의미한다. 본 연구는 정보이론을 이용하여 데이터베이스로부터 연속패턴을 자동으로 발견하는 방법에 관한 내용이다. 기존의 방법들이 한 속성내에서의 연속패턴만을 탐지하는 일차원 연속패턴을 생성하는데 비하여 본 연구에서 제시하는 방법은 데이터베이스내의 모든 속성간의 연속패턴 관계를 탐지할 수 있는 다차원 연속패턴을 생성할 수 있다. 본 연구에서는 연속패턴 생성을 위하여 헬링거(Hellinger) 변량을 사용하였으며 이를 이용하여 발견된 연속패턴들의 중요도를 측정할 수 있었다. 또한 헬링거 변량의 함수적인 특성을 분석하여 연속패턴 추출의 복잡도를 줄이기 위한 두 가지의 법칙이 제안되었고 다수의 실험 데이터를 통하여 다차원의 연속패턴을 생성할 수 있음을 보였다.

Tree-based Navigation Pattern Analysis

  • Choi, Hyun-Jip
    • Communications for Statistical Applications and Methods
    • /
    • 제8권1호
    • /
    • pp.271-279
    • /
    • 2001
  • Sequential pattern discovery is one of main interests in web usage mining. the technique of sequential pattern discovery attempts to find inter-session patterns such that the presence of a set of items is followed by another item in a time-ordered set of server sessions. In this paper, a tree-based sequential pattern finding method is proposed in order to discover navigation patterns in server sessions. At each learning process, the suggested method learns about the navigation patterns per server session and summarized into the modified Rymon's tree.

  • PDF

플레이어 행동예측을 위한 순차예측 알고리즘의 개선 (Improvement of Sequential Prediction Algorithm for Player's Action Prediction)

  • 신용우;정태충
    • 인터넷정보학회논문지
    • /
    • 제11권3호
    • /
    • pp.25-32
    • /
    • 2010
  • 게임은 여러 캐릭터와 상태공간을 갖고 있다. 그러므로 학습을 하는데 많은 시간이 걸린다. 본 논문에서는 강화학습 알고리즘을 이용하였다. 보상 값을 받아 캐릭터가 학습하게 하여 지능적으로 움직이게 하였다. 학습초기에는 학습속도가 느려진다. 순차예측 알고리즘을 개선하여 학습에 적용하였다. 기존 강화학습으로 구현된 게임과 비교 실험하였다. 실험결과 개선 구현된 게임의 성능이 학습속도 측면에서 30% 까지 향상됨을 알 수 있었다.

Self-adaptive Online Sequential Learning Radial Basis Function Classifier Using Multi-variable Normal Distribution Function

  • ;김형중
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 한국정보통신설비학회 2009년도 정보통신설비 학술대회
    • /
    • pp.382-386
    • /
    • 2009
  • Online or sequential learning is one of the most basic and powerful method to train neuron network, and it has been widely used in disease detection, weather prediction and other realistic classification problem. At present, there are many algorithms in this area, such as MRAN, GAP-RBFN, OS-ELM, SVM and SMC-RBF. Among them, SMC-RBF has the best performance; it has less number of hidden neurons, and best efficiency. However, all the existing algorithms use signal normal distribution as kernel function, which means the output of the kernel function is same at the different direction. In this paper, we use multi-variable normal distribution as kernel function, and derive EKF learning formulas for multi-variable normal distribution kernel function. From the result of the experience, we can deduct that the proposed method has better efficiency performance, and not sensitive to the data sequence.

  • PDF

A Study on Effectiveness of Mathematics Teachers' Collaborative Learning: Focused on an Analysis of Discourses

  • Chen, Xiaoying;Shin, Bomi
    • 한국수학교육학회지시리즈D:수학교육연구
    • /
    • 제25권1호
    • /
    • pp.1-20
    • /
    • 2022
  • Collaborative learning has been highlighted as an effective method of teachers' professional development in various studies. To disclose teachers' discourse threads in the process of collaborative learning for developing their knowledge, this paper adopted two methods including "content analysis" and "time-sequential analysis" of learning analytics. Such analyses were implemented for mining teachers' updated knowledge and the discourse threads in the discussion during collaborative learning. The materials for analysis involved two aspects: one was from the video-taped lesson observation reports written by teachers before and after discussing, and the other was from their discourses during the discussion process. The results proved that teachers' knowledge for teaching the centroid of a triangle was updated in the collaborative learning period, and also revealed the discourse threads of teachers' collaboration contained "requesting information or opinions", "building on ideas", and "providing evidence or reasoning", with the emphasis on "challenging ideas or re-focusing talk"

상태 정보 학습을 이용한 새로운 순차회로 ATPG 기법 (New Test Generation for Sequential Circuits Based on State Information Learning)

  • 이재훈;송오영
    • 한국통신학회논문지
    • /
    • 제25권4A호
    • /
    • pp.558-565
    • /
    • 2000
  • 조합형 회로에 대한 테스트 패턴 생성의 문제는 거의 만족할 만한 수준에 도달한데 반해 순차형 회로에 대한 테스트 패턴 생성은 여전히 많은 연구를 필요로 하고 있다. 본 연구에서는 효율적인 검사 패턴 생성을 위하여 검사 패턴 생성 과정에서 탐색되어지는 상태 공간 정보의 효율적으로 저장하고, 그렇게 저장된 상태 공간 정보를 이용하여 효율적으로 검사패턴을 생성하는 알고리즘을 제안한다. 그리고 제안된 알고리즘과 기존의 결정적 검사 패턴 생성 알고리즘을 실험을 통하여 비교함으로써 제안된 알고리즘의 효율성을 검증한다.

  • PDF

순차 데이터간의 유사도 표현에 의한 동영상 분류 (Video Classification System Based on Similarity Representation Among Sequential Data)

  • 이호석;양지훈
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제7권1호
    • /
    • pp.1-8
    • /
    • 2018
  • 동영상 데이터는 시간에 따른 정보는 물론이고, 많은 정보량과 함께 잡음도 포함하고 있기 때문에 이에 대한 간단한 표현을 학습하는 것은 쉽지 않다. 본 연구에서는 이와 같은 동영상 데이터를 추상적이면서 보다 간단하게 표현할 수 있는 순차 데이터간의 유사도 표현 방법과 딥러닝 학습방법을 제안한다. 이는 동영상을 구성하는 이미지 데이터 벡터들 사이의 유사도를 내적으로 표현할 때 그것들이 서로 최대한의 정보를 가질 수 있도록 하는 함수를 구하고 학습하는 것이다. 실제 데이터를 통하여 제안된 방법이 기존의 동영상 분류 방법들보다도 뛰어난 분류 성능을 보임을 확인하였다.