• Title/Summary/Keyword: Sequential Detection

Search Result 263, Processing Time 0.028 seconds

Malware Detector Classification Based on the SPRT in IoT

  • Jun-Won Ho
    • International journal of advanced smart convergence
    • /
    • v.12 no.1
    • /
    • pp.59-63
    • /
    • 2023
  • We create a malware detector classification method with using the Sequential Probability Ratio Test (SPRT) in IoT. More specifically, we adapt the SPRT to classify malware detectors into two categories of basic and advanced in line with malware detection capability. We perform evaluation of our scheme through simulation. Our simulation results show that the number of advanced detectors is changed in line with threshold for fraction of advanced malware information, which is used to judge advanced detectors in the SPRT.

A simple computational algorithm of ML optimum multiuser detector for synchronous code division multiple access channels (동기화된 부호 분할 다원 접속 채널을 위한 ML 최적 다중 사용자 검출기의 간단한 계산 알고리즘)

  • 권형욱;최태영;오성근
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.5
    • /
    • pp.1-9
    • /
    • 1996
  • In this paper, we propose an efficient computational algorithm that can reduce significantly the computational complexity of the ML optimum multiuser detector known as the most excellent detector in synchronous code division multiple access channels. The proposed detector uses the sequential detection algorithm based on the alternating maximization appraoch to obtain the ML estimates. As initial estimates for this sequential algorithm, we can use the estimated values obtained by the conventional single-user detector, the linear decorrelating multiuser detector, or the decorrelating decision-feedback muliuser detector, the linear decorrelating multiuser detector, or the decorrelating decision-feedback multiuser detector. We have performed computer simulations in order to see the convergence behaviors and the detection performance of the propsoed algorithm in terms of initial algorithms and the number of users, and then to compare the computational complexity with that of the ML optimum multiuser detector. From the results, we have seen that the proposed alternating maximization detector has nearly equal detction performance with that of the ML optimum multiuser detctor in only a few iteration.

  • PDF

Bianry Searching Algorithm for HIgh Sped Scene Change Indexing of Moving Pictures (동영상의 고속 장면분할을 위한 이진검색 알고리즘)

  • Kim, Seong-Cheol;O, Il-Gyun;Jang, Jong-Hwan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.4
    • /
    • pp.1044-1049
    • /
    • 2000
  • In detection of a scene change of the moving pictures which has massive information capacity, the temporal sampling method has faster searching speed than the sequential searching method for the whole moving pictures, yet employed searching algorithm and detection interval greatly affect searching time and searching precision. In this study, the whole moving pictures were primarily retrieved by the temporal sampling method. When there exist a scene change within the sampling interval, we suggested a fast searching algorithm using binary searching and derived an equation formula to determine optimal primary retrieval which can minimize computation, and showed the result of the experiment on MPEG moving pictures. The result of the experiment shows that the searching speed of the suggested algorithm is maximum 13 times faster than the one of he sequential searching method.

  • PDF

Failure Detection Using Adaptive Predictor (적응예측기를 이용한 고장파악방법)

  • 이연석;이장규
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.2
    • /
    • pp.210-217
    • /
    • 1990
  • For the failure detection of dynamic systems, processing the residuals from the observer of the estimator is the most general method. A failure detection method which use an adaptive predictor to separate the effect of sensor failure from the additive noise in the residuals of a Kalman filter that is employed as an estimator of a dynamic system is addressed here. In the method, the property of the residuals of an optimal Kalman estimator is exploited. The simulation results of this method shows that the proposed method is superior to the sequential probability ratio test for a small failure magnitude.

  • PDF

A Study on Design and Analysis of an Alert-Confirm Detection Method (Alert-Confirm 탐지 방식의 설계 및 성능 분석에 관한 연구)

  • Eunhee Kim;Hyunsu Oh;Sawon Min
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.140-146
    • /
    • 2024
  • Active electronically scanning antennas are faster and more flexible in beam-scheduling than mechanical antennas. Thus, they require an advanced resource management or detection methods to operate efficiently. In a surveillance radar performing periodic detection, alert-confirm detection is an excellent method to improve the cumulative detection probability by reducing the period while maintaining the detection probability. This paper proposes a design method for alert-confirm detection based on the parameters of the conventional design. We developed a simulator based on simulink@matworks and verified the result through Monte Carlo simulation.

Anomalous Event Detection in Traffic Video Based on Sequential Temporal Patterns of Spatial Interval Events

  • Ashok Kumar, P.M.;Vaidehi, V.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.169-189
    • /
    • 2015
  • Detection of anomalous events from video streams is a challenging problem in many video surveillance applications. One such application that has received significant attention from the computer vision community is traffic video surveillance. In this paper, a Lossy Count based Sequential Temporal Pattern mining approach (LC-STP) is proposed for detecting spatio-temporal abnormal events (such as a traffic violation at junction) from sequences of video streams. The proposed approach relies mainly on spatial abstractions of each object, mining frequent temporal patterns in a sequence of video frames to form a regular temporal pattern. In order to detect each object in every frame, the input video is first pre-processed by applying Gaussian Mixture Models. After the detection of foreground objects, the tracking is carried out using block motion estimation by the three-step search method. The primitive events of the object are represented by assigning spatial and temporal symbols corresponding to their location and time information. These primitive events are analyzed to form a temporal pattern in a sequence of video frames, representing temporal relation between various object's primitive events. This is repeated for each window of sequences, and the support for temporal sequence is obtained based on LC-STP to discover regular patterns of normal events. Events deviating from these patterns are identified as anomalies. Unlike the traditional frequent item set mining methods, the proposed method generates maximal frequent patterns without candidate generation. Furthermore, experimental results show that the proposed method performs well and can detect video anomalies in real traffic video data.

Sequential Fault Detection and Isolation for Redundant Inertial Sensor Systems with Uncertain Factors

  • Kim, Jeong-Yong;Yang, Cheol-Kwan;Shim, Duk-Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2594-2599
    • /
    • 2003
  • We consider some problems of the Modified SPRT(Sequential Probability Ratio Test) method for fault detection and isolation of inertial redundant sensor systems and propose an Advanced SPRT method to solve the problems of the Modified SPRT method. One problem of the Modified SPRT method to apply to inertial sensor system comes from the effect of inertial sensor errors such as misalignment, scale factor error and sensor bias in the parity vector, which make the Modified SPRT method hard to be applicable. The other problem is due to the correlation of parity vector components which may induce false alarm. We use a two-stage Kalman filter to remove effects of the inertial sensor errors and propose the modified parity vector and the controlled parity vector which removes the effect of correlation of parity vector components. The Advanced SPRT method is derived form the modified parity vector and the controlled parity vector. Some simulation results are presented to show the usefulness of the Advanced SPRT method to redundant inertial sensor systems.

  • PDF

A Study on The Detection of Multiple Vehicles Using Sequence Image Analysis (연속 영상 분석에 의한 다중 차량 검출 방법의 연구)

  • 한상훈;이강호
    • Journal of the Korea Society of Computer and Information
    • /
    • v.8 no.2
    • /
    • pp.37-43
    • /
    • 2003
  • The purpose of this thesis is to detect multiple vehicles using sequence image analysis at process that detect forward vehicles and lane from sequential color images. Detection of vehicles candidate area uses shadow characteristic and edge information in one frame. And, method to detect multiple vehicles area analyzes Estimation of Vehicle(EOV) and Accumulated Similarity Function(ASF) of vehicles candidate areas that exist in sequential images and examine possibility to be vehicles. Most researches detected a forward vehicles in road images but this research presented method to detect several vehicles and apply enough in havy traffic. To verify the effects of the proposed method, we capture the road images with notebook and CCD camera for PC and present the results such as processing time, accuracy and vehicles detection in the images.

  • PDF

Fast Face Detection in Video Using The HCr and Adaptive Thresholding Method (HCr과 적응적 임계화에 의한 고속 얼굴 검출)

  • 신승주;최석림
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.6
    • /
    • pp.61-71
    • /
    • 2004
  • Recently, various techniques for face detection are studied, but most of them still have problems on processing in real-time. Therefore, in this paper, we propose novel techniques for real-time detection of human faces in sequential images using motion and chroma information. First, background model is used to find a moving area. In this procmoving area. edure, intensity values for reference images are averaged, then skin-color are detected in We use HCr color-space model and adaptive threshold method for detection. Second, binary image labeling is applied to acquire candidate regions for faces. Candidates for mouth and eyes on a face are obtained using differences between green(G) and blue(B), intensity(I) and chroma-red(Cr) value. We also considered distances between eye points and mouth on a face. Experimental results show effectiveness of real-time detection for human faces in sequential images.

Speed Sign Recognition Using Sequential Cascade AdaBoost Classifier with Color Features

  • Kwon, Oh-Seol
    • Journal of Multimedia Information System
    • /
    • v.6 no.4
    • /
    • pp.185-190
    • /
    • 2019
  • For future autonomous cars, it is necessary to recognize various surrounding environments such as lanes, traffic lights, and vehicles. This paper presents a method of speed sign recognition from a single image in automatic driving assistance systems. The detection step with the proposed method emphasizes the color attributes in modified YUV color space because speed sign area is affected by color. The proposed method is further improved by extracting the digits from the highlighted circle region. A sequential cascade AdaBoost classifier is then used in the recognition step for real-time processing. Experimental results show the performance of the proposed algorithm is superior to that of conventional algorithms for various speed signs and real-world conditions.