• Title/Summary/Keyword: Sequential Algorithm

Search Result 805, Processing Time 0.03 seconds

Vision-based Mobile Robot Localization and Mapping using fisheye Lens (어안렌즈를 이용한 비전 기반의 이동 로봇 위치 추정 및 매핑)

  • Lee Jong-Shill;Min Hong-Ki;Hong Seung-Hong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.4
    • /
    • pp.256-262
    • /
    • 2004
  • A key component of an autonomous mobile robot is to localize itself and build a map of the environment simultaneously. In this paper, we propose a vision-based localization and mapping algorithm of mobile robot using fisheye lens. To acquire high-level features with scale invariance, a camera with fisheye lens facing toward to ceiling is attached to the robot. These features are used in mP building and localization. As a preprocessing, input image from fisheye lens is calibrated to remove radial distortion and then labeling and convex hull techniques are used to segment ceiling and wall region for the calibrated image. At the initial map building process, features we calculated for each segmented region and stored in map database. Features are continuously calculated for sequential input images and matched to the map. n some features are not matched, those features are added to the map. This map matching and updating process is continued until map building process is finished, Localization is used in map building process and searching the location of the robot on the map. The calculated features at the position of the robot are matched to the existing map to estimate the real position of the robot, and map building database is updated at the same time. By the proposed method, the elapsed time for map building is within 2 minutes for 50㎡ region, the positioning accuracy is ±13cm and the error about the positioning angle of the robot is ±3 degree for localization.

  • PDF

Mobile Robot Localization and Mapping using Scale-Invariant Features (스케일 불변 특징을 이용한 이동 로봇의 위치 추정 및 매핑)

  • Lee, Jong-Shill;Shen, Dong-Fan;Kwon, Oh-Sang;Lee, Eung-Hyuk;Hong, Seung-Hong
    • Journal of IKEEE
    • /
    • v.9 no.1 s.16
    • /
    • pp.7-18
    • /
    • 2005
  • A key component of an autonomous mobile robot is to localize itself accurately and build a map of the environment simultaneously. In this paper, we propose a vision-based mobile robot localization and mapping algorithm using scale-invariant features. A camera with fisheye lens facing toward to ceiling is attached to the robot to acquire high-level features with scale invariance. These features are used in map building and localization process. As pre-processing, input images from fisheye lens are calibrated to remove radial distortion then labeling and convex hull techniques are used to segment ceiling region from wall region. At initial map building process, features are calculated for segmented regions and stored in map database. Features are continuously calculated from sequential input images and matched against existing map until map building process is finished. If features are not matched, they are added to the existing map. Localization is done simultaneously with feature matching at map building process. Localization. is performed when features are matched with existing map and map building database is updated at same time. The proposed method can perform a map building in 2 minutes on $50m^2$ area. The positioning accuracy is ${\pm}13cm$, the average error on robot angle with the positioning is ${\pm}3$ degree.

  • PDF

A $CST^+$ Tree Index Structure for Range Search (범위 검색을 위한 $CST^+$ 트리 인덱스 구조)

  • Lee, Jae-Won;Kang, Dae-Hee;Lee, Sang-Goo
    • Journal of KIISE:Databases
    • /
    • v.35 no.1
    • /
    • pp.17-28
    • /
    • 2008
  • Recently, main memory access is a performance bottleneck for many computer applications. Cache memory is introduced in order to reduce memory access latency. However, it is possible for cache memory to reduce memory access latency, when desired data are located on cache. EST tree is proposed to solve this problem by improving T tree. However, when doing a range search, EST tree has to search unnecessary nodes. Therefore, this paper proposes $CST^+$ tree which has the merit of CST tree and is possible to do a range search by linking data nodes with linked lists. By experiments, we show that $CST^+$ is $4{\sim}10$ times as fast as CST and $CSB^+$. In addition, rebuilding an index Is an essential step for the database recovery from system failure. In this paper, we propose a fast tree index rebuilding algorithm called MaxPL. MaxPL has no node-split overhead and employs a parallelism for reading the data records and inserting the keys into the index. We show that MaxPL is $2{\sim}11$ times as fast as sequential insert and batch insert.

Performance Evaluation of Hash Join Algorithm on Flash Memory SSDs (플래쉬 메모리 SSD 기반 해쉬 조인 알고리즘의 성능 평가)

  • Park, Jang-Woo;Park, Sang-Shin;Lee, Sang-Won;Park, Chan-Ik
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.11
    • /
    • pp.1031-1040
    • /
    • 2010
  • Hash join is one of the core algorithms in databases management systems. If a hash join cannot complete in one-pass because the available memory is insufficient (i.e., hash table overflow), however, it may incur a few sequential writes and excessive random reads. With harddisk as the tempoary storage for hash joins, the I/O time would be dominated by slow random reads in its probing phase. Meanwhile, flash memory based SSDs (flash SSDs) are becoming popular, and we will witness in the foreseeable future that flash SSDs replace harddisks in enterprise databases. In contrast to harddisk, flash SSD without any mechanical component has fast latency in random reads, and thus it can boost hash join performance. In this paper, we investigate several important and practical issues when flash SSD is used as tempoary storage for hash join. First, we reveal the va patterns of hash join in detail and explain why flash SSD can outperform harddisk by more than an order of magnitude. Second, we present and analyze the impact of cluster size (i.e., va unit in hash join) on performance. Finally, we emperically demonstrate that, while a commerical query optimizer is error-prone in predicting the execution time with harddisk as temporary storage, it can precisely estimate the execution time with flash SSD. In summary, we show that, when used as temporary storage for hash join, flash SSD will provide more reliable cost estimation as well as fast performance.

Modeling and analysis of dynamic heat transfer in the cable penetration fire stop system by using a new hybrid algorithm (새로운 혼합알고리즘을 이용한 CPFS 내에서의 일어나는 동적 열전달의 수식화 및 해석)

  • Yoon En Sup;Yun Jongpil;Kwon Seong-Pil
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.4 s.21
    • /
    • pp.44-52
    • /
    • 2003
  • In this work dynamic heat transfer in a CPFS (cable penetration fire stop) system built in the firewall of nuclear power plants is three-dimensionally investigated to develop a test-simulator that can be used to verify effectiveness of the sealant. Dynamic heat transfer in the fire stop system is formulated in a parabolic PDE (partial differential equation) subjected to a set of initial and boundary conditions. First, the PDE model is divided into two parts; one corresponding to heat transfer in the axial direction and the other corresponding to heat transfer on the vertical planes. The first PDE is converted to a series of ODEs (ordinary differential equations) at finite discrete axial points for applying the numerical method of SOR (successive over-relaxation) to the problem. The ODEs are solved by using an ODE solver In such manner, the axial heat flux can be calculated at least at the finite discrete points. After that, all the planes are separated into finite elements, where the time and spatial functions are assumed to be of orthogonal collocation state at each element. The initial condition of each finite element can be obtained from the above solution. The heat fluxes on the vertical planes are calculated by the Galerkin FEM (finite element method). The CPFS system was modeled, simulated, and analyzed here. The simulation results were illustrated in three-dimensional graphics. Through simulation, it was shown clearly that the temperature distribution was influenced very much by the number, position, and temperature of the cable stream, and that dynamic heat transfer through the cable stream was one of the most dominant factors, and that the feature of heat conduction could be understood as an unsteady-state process.

  • PDF

A Study on Stealth Design for Exterior Equipment Arrangement Considering the Multi-Bounce Effect (다중반사를 고려한 함정의 외부 탑재 장비 최적배치 연구)

  • Hwang, Joon-Tae;Hong, Suk-Yoon;Kwon, Hyun-Wung;Kim, Jong-Chul;Song, Jee-Hun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.7
    • /
    • pp.918-925
    • /
    • 2017
  • Multiple reflections on exterior equipment with complex shape on naval ships cause unexpectedly high Radar Cross Section (RCS) distributions, and the directions of reradiated electromagnetic waves are hard to predict. Therefore, the optimum arrangement of exterior equipments should be considered according to the Radar Absorbing Structure (RAS) method. In this paper, the optimum arrangement for exterior equipments was determined to reduce multiple reflections and RCS even with complex shapes. The sequential descending arrangement method was used to establish an optimum arrangement algorithm. An LCS-2 type model was selected for optimum exterior equipment arrangements. In order to reduce computational cost, RCS distributions and multiple reflection path analysis of exterior equipments was carried out to select exterior equipments for optimum arrangement, and an optimum arrangement was determined to find positions with minimum RCS values. Also, the RCS reduction effect was analyzed using detectable radar range.

Predicting blast-induced ground vibrations at limestone quarry from artificial neural network optimized by randomized and grid search cross-validation, and comparative analyses with blast vibration predictor models

  • Salman Ihsan;Shahab Saqib;Hafiz Muhammad Awais Rashid;Fawad S. Niazi;Mohsin Usman Qureshi
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.121-133
    • /
    • 2023
  • The demand for cement and limestone crushed materials has increased many folds due to the tremendous increase in construction activities in Pakistan during the past few decades. The number of cement production industries has increased correspondingly, and so the rock-blasting operations at the limestone quarry sites. However, the safety procedures warranted at these sites for the blast-induced ground vibrations (BIGV) have not been adequately developed and/or implemented. Proper prediction and monitoring of BIGV are necessary to ensure the safety of structures in the vicinity of these quarry sites. In this paper, an attempt has been made to predict BIGV using artificial neural network (ANN) at three selected limestone quarries of Pakistan. The ANN has been developed in Python using Keras with sequential model and dense layers. The hyper parameters and neurons in each of the activation layers has been optimized using randomized and grid search method. The input parameters for the model include distance, a maximum charge per delay (MCPD), depth of hole, burden, spacing, and number of blast holes, whereas, peak particle velocity (PPV) is taken as the only output parameter. A total of 110 blast vibrations datasets were recorded from three different limestone quarries. The dataset has been divided into 85% for neural network training, and 15% for testing of the network. A five-layer ANN is trained with Rectified Linear Unit (ReLU) activation function, Adam optimization algorithm with a learning rate of 0.001, and batch size of 32 with the topology of 6-32-32-256-1. The blast datasets were utilized to compare the performance of ANN, multivariate regression analysis (MVRA), and empirical predictors. The performance was evaluated using the coefficient of determination (R2), mean absolute error (MAE), mean squared error (MSE), mean absolute percentage error (MAPE), and root mean squared error (RMSE)for predicted and measured PPV. To determine the relative influence of each parameter on the PPV, sensitivity analyses were performed for all input parameters. The analyses reveal that ANN performs superior than MVRA and other empirical predictors, andthat83% PPV is affected by distance and MCPD while hole depth, number of blast holes, burden and spacing contribute for the remaining 17%. This research provides valuable insights into improving safety measures and ensuring the structural integrity of buildings near limestone quarry sites.

Development of an Offline Based Internal Organ Motion Verification System during Treatment Using Sequential Cine EPID Images (연속촬영 전자조사 문 영상을 이용한 오프라인 기반 치료 중 내부 장기 움직임 확인 시스템의 개발)

  • Ju, Sang-Gyu;Hong, Chae-Seon;Huh, Woong;Kim, Min-Kyu;Han, Young-Yih;Shin, Eun-Hyuk;Shin, Jung-Suk;Kim, Jing-Sung;Park, Hee-Chul;Ahn, Sung-Hwan;Lim, Do-Hoon;Choi, Doo-Ho
    • Progress in Medical Physics
    • /
    • v.23 no.2
    • /
    • pp.91-98
    • /
    • 2012
  • Verification of internal organ motion during treatment and its feedback is essential to accurate dose delivery to the moving target. We developed an offline based internal organ motion verification system (IMVS) using cine EPID images and evaluated its accuracy and availability through phantom study. For verification of organ motion using live cine EPID images, a pattern matching algorithm using an internal surrogate, which is very distinguishable and represents organ motion in the treatment field, like diaphragm, was employed in the self-developed analysis software. For the system performance test, we developed a linear motion phantom, which consists of a human body shaped phantom with a fake tumor in the lung, linear motion cart, and control software. The phantom was operated with a motion of 2 cm at 4 sec per cycle and cine EPID images were obtained at a rate of 3.3 and 6.6 frames per sec (2 MU/frame) with $1,024{\times}768$ pixel counts in a linear accelerator (10 MVX). Organ motion of the target was tracked using self-developed analysis software. Results were compared with planned data of the motion phantom and data from the video image based tracking system (RPM, Varian, USA) using an external surrogate in order to evaluate its accuracy. For quantitative analysis, we analyzed correlation between two data sets in terms of average cycle (peak to peak), amplitude, and pattern (RMS, root mean square) of motion. Averages for the cycle of motion from IMVS and RPM system were $3.98{\pm}0.11$ (IMVS 3.3 fps), $4.005{\pm}0.001$ (IMVS 6.6 fps), and $3.95{\pm}0.02$ (RPM), respectively, and showed good agreement on real value (4 sec/cycle). Average of the amplitude of motion tracked by our system showed $1.85{\pm}0.02$ cm (3.3 fps) and $1.94{\pm}0.02$ cm (6.6 fps) as showed a slightly different value, 0.15 (7.5% error) and 0.06 (3% error) cm, respectively, compared with the actual value (2 cm), due to time resolution for image acquisition. In analysis of pattern of motion, the value of the RMS from the cine EPID image in 3.3 fps (0.1044) grew slightly compared with data from 6.6 fps (0.0480). The organ motion verification system using sequential cine EPID images with an internal surrogate showed good representation of its motion within 3% error in a preliminary phantom study. The system can be implemented for clinical purposes, which include organ motion verification during treatment, compared with 4D treatment planning data, and its feedback for accurate dose delivery to the moving target.

Ensemble Learning with Support Vector Machines for Bond Rating (회사채 신용등급 예측을 위한 SVM 앙상블학습)

  • Kim, Myoung-Jong
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.29-45
    • /
    • 2012
  • Bond rating is regarded as an important event for measuring financial risk of companies and for determining the investment returns of investors. As a result, it has been a popular research topic for researchers to predict companies' credit ratings by applying statistical and machine learning techniques. The statistical techniques, including multiple regression, multiple discriminant analysis (MDA), logistic models (LOGIT), and probit analysis, have been traditionally used in bond rating. However, one major drawback is that it should be based on strict assumptions. Such strict assumptions include linearity, normality, independence among predictor variables and pre-existing functional forms relating the criterion variablesand the predictor variables. Those strict assumptions of traditional statistics have limited their application to the real world. Machine learning techniques also used in bond rating prediction models include decision trees (DT), neural networks (NN), and Support Vector Machine (SVM). Especially, SVM is recognized as a new and promising classification and regression analysis method. SVM learns a separating hyperplane that can maximize the margin between two categories. SVM is simple enough to be analyzed mathematical, and leads to high performance in practical applications. SVM implements the structuralrisk minimization principle and searches to minimize an upper bound of the generalization error. In addition, the solution of SVM may be a global optimum and thus, overfitting is unlikely to occur with SVM. In addition, SVM does not require too many data sample for training since it builds prediction models by only using some representative sample near the boundaries called support vectors. A number of experimental researches have indicated that SVM has been successfully applied in a variety of pattern recognition fields. However, there are three major drawbacks that can be potential causes for degrading SVM's performance. First, SVM is originally proposed for solving binary-class classification problems. Methods for combining SVMs for multi-class classification such as One-Against-One, One-Against-All have been proposed, but they do not improve the performance in multi-class classification problem as much as SVM for binary-class classification. Second, approximation algorithms (e.g. decomposition methods, sequential minimal optimization algorithm) could be used for effective multi-class computation to reduce computation time, but it could deteriorate classification performance. Third, the difficulty in multi-class prediction problems is in data imbalance problem that can occur when the number of instances in one class greatly outnumbers the number of instances in the other class. Such data sets often cause a default classifier to be built due to skewed boundary and thus the reduction in the classification accuracy of such a classifier. SVM ensemble learning is one of machine learning methods to cope with the above drawbacks. Ensemble learning is a method for improving the performance of classification and prediction algorithms. AdaBoost is one of the widely used ensemble learning techniques. It constructs a composite classifier by sequentially training classifiers while increasing weight on the misclassified observations through iterations. The observations that are incorrectly predicted by previous classifiers are chosen more often than examples that are correctly predicted. Thus Boosting attempts to produce new classifiers that are better able to predict examples for which the current ensemble's performance is poor. In this way, it can reinforce the training of the misclassified observations of the minority class. This paper proposes a multiclass Geometric Mean-based Boosting (MGM-Boost) to resolve multiclass prediction problem. Since MGM-Boost introduces the notion of geometric mean into AdaBoost, it can perform learning process considering the geometric mean-based accuracy and errors of multiclass. This study applies MGM-Boost to the real-world bond rating case for Korean companies to examine the feasibility of MGM-Boost. 10-fold cross validations for threetimes with different random seeds are performed in order to ensure that the comparison among three different classifiers does not happen by chance. For each of 10-fold cross validation, the entire data set is first partitioned into tenequal-sized sets, and then each set is in turn used as the test set while the classifier trains on the other nine sets. That is, cross-validated folds have been tested independently of each algorithm. Through these steps, we have obtained the results for classifiers on each of the 30 experiments. In the comparison of arithmetic mean-based prediction accuracy between individual classifiers, MGM-Boost (52.95%) shows higher prediction accuracy than both AdaBoost (51.69%) and SVM (49.47%). MGM-Boost (28.12%) also shows the higher prediction accuracy than AdaBoost (24.65%) and SVM (15.42%)in terms of geometric mean-based prediction accuracy. T-test is used to examine whether the performance of each classifiers for 30 folds is significantly different. The results indicate that performance of MGM-Boost is significantly different from AdaBoost and SVM classifiers at 1% level. These results mean that MGM-Boost can provide robust and stable solutions to multi-classproblems such as bond rating.

The Availability of the step optimization in Monaco Planning system (모나코 치료계획 시스템에서 단계적 최적화 조건 실현의 유용성)

  • Kim, Dae Sup
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.207-216
    • /
    • 2014
  • Purpose : We present a method to reduce this gap and complete the treatment plan, to be made by the re-optimization is performed in the same conditions as the initial treatment plan different from Monaco treatment planning system. Materials and Methods : The optimization is carried in two steps when performing the inverse calculation for volumetric modulated radiation therapy or intensity modulated radiation therapy in Monaco treatment planning system. This study was the first plan with a complete optimization in two steps by performing all of the treatment plan, without changing the optimized condition from Step 1 to Step 2, a typical sequential optimization performed. At this time, the experiment was carried out with a pencil beam and Monte Carlo algorithm is applied In step 2. We compared initial plan and re-optimized plan with the same optimized conditions. And then evaluated the planning dose by measurement. When performing a re-optimization for the initial treatment plan, the second plan applied the step optimization. Results : When the common optimization again carried out in the same conditions in the initial treatment plan was completed, the result is not the same. From a comparison of the treatment planning system, similar to the dose-volume the histogram showed a similar trend, but exhibit different values that do not satisfy the conditions best optimized dose, dose homogeneity and dose limits. Also showed more than 20% different in comparison dosimetry. If different dose algorithms, this measure is not the same out. Conclusion : The process of performing a number of trial and error, and you get to the ultimate goal of treatment planning optimization process. If carried out to optimize the completion of the initial trust only the treatment plan, we could be made of another treatment plan. The similar treatment plan could not satisfy to optimization results. When you perform re-optimization process, you will need to apply the step optimized conditions, making sure the dose distribution through the optimization process.