• Title/Summary/Keyword: Sequence Data Stream

Search Result 70, Processing Time 0.022 seconds

Efficient Stream Sequence Matching Algorithms for Handheld Devices over Time-Series Stream Data (시계열 스트림 데이터 상에서 핸드헬드 디바이스를 위한 효율적인 스트림 시퀀스 매칭 알고리즘)

  • Moon Yang-Sae;Loh Woong-Kee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.8B
    • /
    • pp.736-744
    • /
    • 2006
  • For the handhold devices, minimizing repetitive CPU operations such as multiplications is a major factor for their performances. In this paper, we propose efficient algorithms for finding similar sequences from streaming time-series data such as stock prices, network traffic data, and sensor network data. First, we formally define the problem of similar subsequence matching from streaming time-series data, which is called the stream sequence matching in this paper. Second, based on the window construction mechanism adopted by the previous subsequence matching algorithms, we present an efficient window-based approach that minimizes CPU operations required for stream sequence matching. Third, we propose a notion of window MBR and present two stream sequence matching algorithms based on the notion. Fourth, we formally prove correctness of the proposed algorithms. Finally, through a series of analyses and experiments, we show that our algorithms significantly outperform the naive algorithm. We believe that our window-based algorithms are excellent choices for embedded stream sequence matching in handhold devices.

Predictive Convolutional Networks for Learning Stream Data (스트림 데이터 학습을 위한 예측적 컨볼루션 신경망)

  • Heo, Min-Oh;Zhang, Byoung-Tak
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.11
    • /
    • pp.614-618
    • /
    • 2016
  • As information on the internet and the data from smart devices are growing, the amount of stream data is also increasing in the real world. The stream data, which is a potentially large data, requires online learnable models and algorithms. In this paper, we propose a novel class of models: predictive convolutional neural networks to be able to perform online learning. These models are designed to deal with longer patterns as the layers become higher due to layering convolutional operations: detection and max-pooling on the time axis. As a preliminary check of the concept, we chose two-month gathered GPS data sequence as an observation sequence. On learning them with the proposed method, we compared the original sequence and the regenerated sequence from the abstract information of the models. The result shows that the models can encode long-range patterns, and can generate a raw observation sequence within a low error.

Finding Weighted Sequential Patterns over Data Streams via a Gap-based Weighting Approach (발생 간격 기반 가중치 부여 기법을 활용한 데이터 스트림에서 가중치 순차패턴 탐색)

  • Chang, Joong-Hyuk
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.3
    • /
    • pp.55-75
    • /
    • 2010
  • Sequential pattern mining aims to discover interesting sequential patterns in a sequence database, and it is one of the essential data mining tasks widely used in various application fields such as Web access pattern analysis, customer purchase pattern analysis, and DNA sequence analysis. In general sequential pattern mining, only the generation order of data element in a sequence is considered, so that it can easily find simple sequential patterns, but has a limit to find more interesting sequential patterns being widely used in real world applications. One of the essential research topics to compensate the limit is a topic of weighted sequential pattern mining. In weighted sequential pattern mining, not only the generation order of data element but also its weight is considered to get more interesting sequential patterns. In recent, data has been increasingly taking the form of continuous data streams rather than finite stored data sets in various application fields, the database research community has begun focusing its attention on processing over data streams. The data stream is a massive unbounded sequence of data elements continuously generated at a rapid rate. In data stream processing, each data element should be examined at most once to analyze the data stream, and the memory usage for data stream analysis should be restricted finitely although new data elements are continuously generated in a data stream. Moreover, newly generated data elements should be processed as fast as possible to produce the up-to-date analysis result of a data stream, so that it can be instantly utilized upon request. To satisfy these requirements, data stream processing sacrifices the correctness of its analysis result by allowing some error. Considering the changes in the form of data generated in real world application fields, many researches have been actively performed to find various kinds of knowledge embedded in data streams. They mainly focus on efficient mining of frequent itemsets and sequential patterns over data streams, which have been proven to be useful in conventional data mining for a finite data set. In addition, mining algorithms have also been proposed to efficiently reflect the changes of data streams over time into their mining results. However, they have been targeting on finding naively interesting patterns such as frequent patterns and simple sequential patterns, which are found intuitively, taking no interest in mining novel interesting patterns that express the characteristics of target data streams better. Therefore, it can be a valuable research topic in the field of mining data streams to define novel interesting patterns and develop a mining method finding the novel patterns, which will be effectively used to analyze recent data streams. This paper proposes a gap-based weighting approach for a sequential pattern and amining method of weighted sequential patterns over sequence data streams via the weighting approach. A gap-based weight of a sequential pattern can be computed from the gaps of data elements in the sequential pattern without any pre-defined weight information. That is, in the approach, the gaps of data elements in each sequential pattern as well as their generation orders are used to get the weight of the sequential pattern, therefore it can help to get more interesting and useful sequential patterns. Recently most of computer application fields generate data as a form of data streams rather than a finite data set. Considering the change of data, the proposed method is mainly focus on sequence data streams.

Sequence Stream Indexing Method using DFT and Bitmap in Sequence Data Warehouse (시퀀스 데이터웨어하우스에서 이산푸리에변환과 비트맵을 이용한 시퀀스 스트림 색인 기법)

  • Son, Dong-Won;Hong, Dong-Kweon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.2
    • /
    • pp.181-186
    • /
    • 2012
  • Recently there has been many active researches on searching similar sequences from data generated with the passage of time. Those data are classified as time series data or sequence data and have different semantics from scalar data of traditional databases. In this paper similar sequence search retrieves sequences that have a similar trend of value changes. At first we have transformed the original sequences by applying DFT. The converted data are more suitable for trend analysis and they require less number of attributes for sequence comparisons. In addition we have developed a region-based query and we applied bitmap indexes which could show better performance in data warehouse. We have built bitmap indexes with varying number of attributes and we have found the least cost query plans for efficient similar sequence searches.

Development of an Event Stream Processing System for the Vehicle Telematics Environment

  • Kim, Jong-Ik;Kwon, Oh-Cheon;Kim, Hyun-Suk
    • ETRI Journal
    • /
    • v.31 no.4
    • /
    • pp.463-465
    • /
    • 2009
  • In this letter, we present an event stream processing system that can evaluate a pattern query for a data sequence with predicates. We propose a pattern query language and develop a pattern query processing system. In our system, we propose novel techniques for run-time aggregation and negation processing and apply our system to stream data generated from vehicles to monitor unusual driving patterns.

The Study of the Seamless Handoff Algorithm in PDSNs (PDSN간 Seamless 핸드오프 알고리즘에 관한 연구)

  • Sin, Dong-Jin;Kim, Su-Chang;Im, Seon-Bae;Jeon, Byeong-Jun;Song, Byeong-Gwon;Jeong, Tae-Ui
    • The KIPS Transactions:PartC
    • /
    • v.9C no.2
    • /
    • pp.257-266
    • /
    • 2002
  • In 3GPP2 wireless data communications, Mobile IP is used to support macro mobility and PDSN performs the function of foreign agent. The mobility supported when a mobile station moves from one PDSN to another is called a macro mobility. In this Paper, we first examine the possibilities of packet loss and change of packet sequences that can be occurred in macro mobility. Then, to resolve such Problems, we suggest a seamless handoff algorithm in PDSNs based on packet sequence control for each of down-stream and up-stream cases respectively.

Mining Frequent Itemsets with Normalized Weight in Continuous Data Streams

  • Kim, Young-Hee;Kim, Won-Young;Kim, Ung-Mo
    • Journal of Information Processing Systems
    • /
    • v.6 no.1
    • /
    • pp.79-90
    • /
    • 2010
  • A data stream is a massive unbounded sequence of data elements continuously generated at a rapid rate. The continuous characteristic of streaming data necessitates the use of algorithms that require only one scan over the stream for knowledge discovery. Data mining over data streams should support the flexible trade-off between processing time and mining accuracy. In many application areas, mining frequent itemsets has been suggested to find important frequent itemsets by considering the weight of itemsets. In this paper, we present an efficient algorithm WSFI (Weighted Support Frequent Itemsets)-Mine with normalized weight over data streams. Moreover, we propose a novel tree structure, called the Weighted Support FP-Tree (WSFP-Tree), that stores compressed crucial information about frequent itemsets. Empirical results show that our algorithm outperforms comparative algorithms under the windowed streaming model.

Pattern Similarity Retrieval of Data Sequences for Video Retrieval System (비디오 검색 시스템을 위한 데이터 시퀀스 패턴 유사성 검색)

  • Lee Seok-Lyong
    • The KIPS Transactions:PartD
    • /
    • v.13D no.3 s.106
    • /
    • pp.347-356
    • /
    • 2006
  • A video stream can be represented by a sequence of data points in a multidimensional space. In this paper, we introduce a trend vector that approximates values of data points in a sequence and represents the moving trend of points in the sequence, and present a pattern similarity matching method for data sequences using the trend vector. A sequence is partitioned into multiple segments, each of which is represented by a trend vector. The query processing is based on the comparison of these vectors instead of scanning data elements of entire sequences. Using the trend vector, our method is designed to filter out irrelevant sequences from a database and to find similar sequences with respect to a query. We have performed an extensive experiment on synthetic sequences as well as video streams. Experimental results show that the precision of our method is up to 2.1 times higher and the processing time is up to 45% reduced, compared with an existing method.

Signal-Dependent Chaotic-State-Modulated Digital Secure Communication

  • Farooq, Omar;Datta, Sekharjit
    • ETRI Journal
    • /
    • v.28 no.2
    • /
    • pp.250-252
    • /
    • 2006
  • In this letter, a discrete state, discrete time chaotic pseudo random number generator (CPRNG) is presented for stream ciphering of text, audio, or image data. The CPRNG is treated as a finite state machine, and its state is modulated according to the input bit sequence of the signal to be encrypted. The modulated state sequence obtained can be transmitted as a spread spectrum or encrypted data.

  • PDF

A Sliding Window Technique for Open Data Mining over Data Streams (개방 데이터 마이닝에 효율적인 이동 윈도우 기법)

  • Chang Joong-Hyuk;Lee Won-Suk
    • The KIPS Transactions:PartD
    • /
    • v.12D no.3 s.99
    • /
    • pp.335-344
    • /
    • 2005
  • Recently open data mining methods focusing on a data stream that is a massive unbounded sequence of data elements continuously generated at a rapid rate are proposed actively. Knowledge embedded in a data stream is likely to be changed over time. Therefore, identifying the recent change of the knowledge quickly can provide valuable information for the analysis of the data stream. This paper proposes a sliding window technique for finding recently frequent itemsets, which is applied efficiently in open data mining. In the proposed technique, its memory usage is kept in a small space by delayed-insertion and pruning operations, and its mining result can be found in a short time since the data elements within its target range are not traversed repeatedly. Moreover, the proposed technique focused in the recent data elements, so that it can catch out the recent change of the data stream.