• 제목/요약/키워드: Septin4

검색결과 8건 처리시간 0.026초

Schizosaccharomyces pombe의 septin 유전자의 클로닝과 염기서열분석 (Cloning and Sequencing Analysis of the Septin Gene in Schizosaccharomyces pombe)

  • 김성철;김형배
    • 미생물학회지
    • /
    • 제33권4호
    • /
    • pp.232-236
    • /
    • 1997
  • Septin 유전자는 Saccharomyces cerevisiae에서 filament를 암호화하고 있으며 세포질분열이나 bud의 형성에 중요한 역할을 하는 것으로 알려져있다. S. cerevisiae에서 septin유전자는 4가지가 발견되었으며 초파리나 쥐의 세포에서도 발견되고 있다. 본 연구에서는 PCR 방법을 이용하여 Schizosaccharomyces pombe에서 septin 유전자를 찾아내었다. S. pombe의 septin 유전자는 1143 bp의 open reading frame을 갖고 있으며 380개의 아미노산으로된 42 kd의 분자량을 가진 단백질을 암호화하였다. S. cerevisiae의 septin 유전자의 하나인 $CDC_{12}$ 유전자와의 유사성을 비교한 결과 51.8%의 유사성이 있음이 밝혀졌다.

  • PDF

The correlation of Septin4 gene expression with sperm quality, DNA damage, and oxidative stress level in infertile patients

  • Rahil Jannatifar;Hamid Piroozmanesh;Fahimeh Naghi Jalalabadi;Hamid Reza Momeni
    • Anatomy and Cell Biology
    • /
    • 제56권4호
    • /
    • pp.518-525
    • /
    • 2023
  • Septin4 belong to a family of polymerizing GTP-binding proteins that are required for many cellular functions, such as membrane compartmentalization, vesicular trafficking, mitosis, and cytoskeletal remodeling. Since, Septin4 is expressed specifically in the testis, we aimed to determine the association between Septin4 gene expression with sperm quality, DNA damage, and stress oxidative level in infertile patients. The present study included 60 semen samples that grouped into three groups: normozoospermia (n=20), asthenozoospermia (n=20), astheno-teratozoospermia (n=20). Initially, semen parameters were analyzed by using the World Health Organization protocol. The mRNA expression of Septin4 in sperm was examined using reverse transcription-polymerase chain reaction. Oxidative stress markers, i.e., total antioxidant capacity, superoxide dismutase, catalase, glutathione peroxidase, and malondialdehyde, were determined by ELISA kit. The current study showed a statistically significant highly positive correlation in Septin4 gene expression with sperm motility, normal morphology, viability, capacity, and sperm mitochondrial membrane potential (MMP). However, it showed significant negative correlation with sperm DNA fragmentation. Septin4 had a significant correlation with stress oxidative factor and antioxidant enzyme levels. In conclusion, Septin4 gene expression provides clinical useful information for the diagnosis of male infertility. It might be a marker for discrimination between fertile and infertile patients. The current study showed a statistically significant highly positive correlation in Septin4 gene expression with sperm motility, normal morphology, viability, capacity, and sperm MMP. However, it shows significant negative correlation with sperm DNA fragmentation. Septin4 had a significant correlation with stress oxidative factor and antioxidant enzyme levels.

Phosphorylation-Dependent Septin Interaction of Bni5 is Important for Cytokinesis

  • Nam, Sung-Chang;Sung, Hye-Ran;Kang, Seung-Hye;Joo, Jin-Young;Lee, Soo-Jae;Chung, Yeon-Bok;Lee, Chong-Kil;Song, Suk-Gil
    • Journal of Microbiology
    • /
    • 제45권3호
    • /
    • pp.227-233
    • /
    • 2007
  • In budding yeast, septin plays as a scaffold to recruits protein components and regulates crucial cellular events including bud site selection, bud morphogenesis, Cdc28 activation pathway, and cytokinesis. Phosphorylation of Bni5 isolated as a suppressor for septin defect is essential to Swe1-dependent regulation of bud morphogenesis and mitotic entry. The mechanism by which Bni5 regulates normal septin function is not completely understood. Here, we provide evidence that Bni5 phosphorylation is important for interaction with septin component Cdc11 and for timely delocalization from septin filament at late mitosis. Phosphorylation-deficient bni5-4A was synthetically lethal with $hof1{\Delta}$. bni5-4A cells had defective structure of septin ring and connected cell morphology, indicative of defects in cytokinesis. Two-hybrid analysis revealed that bni5-4A has a defect in direct interaction with Cdc11 and Cdc12. GFP-tagged bni5-4A was normally localized at mother-bud neck of budded cells before middle of mitosis. In contrast, at large-budded telophase cells, bni5-4A-GFP was defective in localization and disappeared from the neck approximately 2 min earlier than that of wild type, as evidenced by time-lapse analysis. Therefore, earlier delocalization of bni5-4A from septin filament is consistent with phosphorylation-dependent interaction with the septin component. These results suggest that timely de localization of Bni5 by phosphorylation is important for septin function and regulation of cytokinesis.

Requirement of Bni5 Phosphorylation for Bud Morphogenesis in Saccharomyces cerevisiae

  • Nam, Sung-Chang;Sung, Hye-Ran;Chung, Yeon-Bok;Lee, Chong-Kil;Lee, Dong-Hun;Song, Suk-Gil
    • Journal of Microbiology
    • /
    • 제45권1호
    • /
    • pp.34-40
    • /
    • 2007
  • In budding yeast, G2/M transition is tightly correlated with bud morphogenesis regulated by Swel and septin that plays as a scaffold to recruits protein components. BNI5 isolated as a suppressor for septin defect is implicated in septin organization and cytokinesis. The mechanism by which Bni5 regulates normal septin function is not completely understood. Here, we show that Bni5 phosphorylation is required for mitotic entry regulated by Swel pathway. Bni5 modification was evident from late mitosis to G1 phase, and CIP treatment in vitro of affinity-purified Bni5 removed the modification, indicative of phosphorylation on Bni5. The phosphorylation-deficient mutant of BNI5 (bni5-4A) was defective in both growth at semi-restrictive temperature and suppression of septin defect. Loss of Bni5 phosphorylation resulted in abnormal bud morphology and cell cycle delay at G2 phase, as evidenced by the formation of elongated cells with multinuclei. However, deletion of Swel completely eliminated the elongated-bud phenotypes of both bni5 deletion and bni5-4A mutants. These results suggest that the bud morphogenesis and mitotic entry are positively regulated by phosphorylation-dependent function of Bni5 which is under the control of Swel morphogenesis pathway.

Laser Capture Microdissection을 이용한 유전자 발현 연구(II) : 원시난포와 1차난포 유전자 발현의 차이에 대한 분석 (Analysis of the Gene Expression by Laser Capture Microdissection(II) : Differential Gene Expression between Primordial and Primary Follicles)

  • 박창은;고정재;이숙환;차광렬;김격진;이경아
    • 한국발생생물학회지:발생과생식
    • /
    • 제6권2호
    • /
    • pp.89-96
    • /
    • 2002
  • 성장을 멈추고 있는 원시난포(primordial follicle)에서 난포발달이 개시되어 1차난포(primary follicle)로 발달하는 조절기전은 잘 알려져 있지 않다. 이 초기 난포발달 과정에 관여하는 유전자를 알아내기 위해 suppression subtractive hybridization(SSH)을 사용하였다. 생후 1일과 5일째의 생쥐 난소로부터 얻은 cDNA로 forward와 reverse subtraction을 수행하여 각각 day1과 day5-subtracted cDNA library를 얻었다. 이를 cloning한 결과, 357개 clone의 염기 서열을 BLAST와 RIKEN을 이용해 분석하여 27개의 clone은 novel gene으로 330개의 clone은 데이터 베이스와 일치함을 알았다. 이 중에 기능이 알려진 유전자는 day1에서는 42종, day5에서는 47종이 각각 차이 나게 발현하고 있는 것으로 나타났다. Day1-subtracted cDNA library에서는 GDF8, lats2, septin2, wee1등 4개 유전자를, day5-subtracted cDNA library에서는 HSP84, laminin2, MATER, MTi7, PTP 및 wrn등 6개 유전자를 선택하여 LCM-RT-PCR방법으로 실제로 원시난포와 1차난포에서 차이 나게 발현되고 있는 것을 확인하였다. 본 연구에서 얻은 유전자 발현 양상의 결과는 앞으로 생쥐뿐만 아니라 사람 난소에서 primordial-primary follicle transition에 관여하는 기전을 연구하는데 중요한 정보를 제공할 수 있을 것으로 사료된다.

  • PDF

개의 네 품종에서 기능 유전자들에 대한 정량적 발현 분석 (Quantitative Expression Analysis of Functional Genes in Four Dog Breeds)

  • 김정안;김상훈;이희은;정호임;남규휘;김민규;허재원;최봉환;김희수
    • 생명과학회지
    • /
    • 제25권8호
    • /
    • pp.861-869
    • /
    • 2015
  • 가축화된 동물종 중 하나인 개는, 다양한 목적을 위해 인간에 의하여 선택적으로 육종되었다. 개는 많은 품종을 갖고 있고, 특정한 행동과 형태를 갖도록 인공적으로 선택되어 왔다. 개들은 그들의 삶을 안내, 구조 혹은 탐지 등의 특수 목적에 대하여 인간에게 헌신하고 있다. 특수 목적견에게 요구되는 좋은 품성, 이를테면 온순함, 강건성, 그리고 인내심과 같은 특성은 그들의 특수 임무를 수행하는 데 필요하다. 많은 연구들이 우수한 특수 목적견의 선정을 위한 유전적 마커를 찾는 데 집중되었다. 본 연구에서는, 뇌에서 발현함으로써 기능하는 것으로 알려진 총 8개의 유전자(ABAT; 4-Aminobutyrate Aminotransferase, PLCB1; Phospholipase C, Beta 1, SLC10A4; Solute Carrier Family 10, Member 4, WNT1; Wingless-Type MMTV Integration Site Family, Member 1, BARX2; BarH-Like Homeobox 2, NEUROD6; Neuronal Differentiation 6, SEPT9; Septin 9 그리고 TBR1; T-Box, Brain, 1)들의 정량적인 발현 양상을 개의 네 품종의 뇌 조직에서 확인하였다. 특히, BARX2, SEPT9, SLC10A4, TBR1 그리고 WNT1 유전자들은 비글과 진돗개에서 많이 발현되는데 반하여, 삽살이와 세퍼드에서는 반대되는 발현 양상을 보여 주었다. 본 연구의 유전자들에 대한 Gene ontology (GO) 결정을 위하여 DAVID (Database for annotation, visualization and integrated discovery) 분석이 수행되었고, 이러한 유전자들이 뇌 발생과 개체의 지능에 중요한 기능을 제공할 것이라고 예상하였다. 결론적으로, 이러한 결과들을 통하여, 뇌에서의 기능과 관련된 인자들과 관련된 바이오마커를 발굴하는 데 중요한 단서를 제공해 줌과 동시에, 우수한 특수 목적견을 선발하는 데 도움을 줄 것이라 기대한다.

Genome-wide Drug-induced Haploinsufficiency Screening of Fission Yeast for Identification of Hydrazinocurcumin Targets

  • Baek, Seung-Tae;Kim, Dong-Uk;Han, Sang-Jo;Woo, Im-Sun;Nam, Mi-Young;Kim, Li-La;Heo, Kyung-Sun;Lee, Hye-Mi;Hwang, Hye-Rim;Choi, Shin-Jung;Won, Mi-Sun;Lee, Min-Ho;Park, Song-Kyu;Lee, Sung-Hou;Kwon, Ho-Jeong;Maeng, Pil-Jae;Park, Hee-Moon;Park, Young-Woo;Kim, Dong-Sup;Hoe, Kwang-Lae
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권2호
    • /
    • pp.263-269
    • /
    • 2008
  • Hydrazinocurcumin (HC), a synthetic derivative of curcumin, has been reported to inhibit angiogenesis via unknown mechanisms. Understanding the molecular mechanisms of the drug's action is important for the development of improved compounds with better pharmacological properties. A genome-wide drug-induced haploinsufficiency screening of fission yeast gene deletion mutants has been applied to identify drug targets of HC. As a first step, the 50% inhibition concentration $(IC_{50})$ of HC was determined to be $2.2{\mu}M$. The initial screening of 4,158 mutants in 384-well plates using robotics was performed at concentrations of 2, 3, and $4{\mu}M$. A second screening was performed to detect sensitivity to HC on the plates. The first screening revealed 178 candidates, and the second screening resulted in 13 candidates, following the elimination of 165 false positives. Final filtering of the condition-dependent haploinsufficient genes gave eight target genes. Analysis of the specific targets of HC has shown that they are related to septum formation and the general transcription processes, which may be related to histone acetyltransferase. The target mutants showed 65% growth inhibition in response to HC compared with wild-type controls, as shown by liquid culture assay.

Identification of Genes Involved in Primordial-primary Follicle Transition by Suppression Subtractive Hybridization

  • Park, Chang-Eun;Yoon, Se-Jin;Jeon, Eun-Hyun;Kim, Young-Hoon;Lee, Sook-Hwan;Lee, Kyung-Ah
    • 한국수정란이식학회:학술대회논문집
    • /
    • 한국수정란이식학회 2002년도 국제심포지엄
    • /
    • pp.98-98
    • /
    • 2002
  • Recruitment of primordial follicles(PMF) is crucial for female fertility. however, factors and mechanisms that regulate this process is poorly understood. The present study was conducted to obtain an inclusive view of the gene expression and to identify novel factors and their pathways of regulating PMF arrest and/or growth initiation. Ovaries from one-day neonatal(consists of oocyte and PMF) and five-day old(consists of PMF and primary follicles, PRIF) mice were collected, either total RNA or mRNA was isolated, and suppression subtractive hybridization(SSH) was used to isolate and clone genes that differentially expressed in day 1 and day 5 ovaries. Confirmation that some of these genes are differentially expressed in PMF and/or in PRIF was accomplished by using laser captured microdissection(LCM), RT-PCR. in situ hybridization(ISH) and/or immunohistochemistry(IHC). In toto, 357 clones were sequenced and analyzed by BLAST and RIKEN program. Sequences of 330 clones significantly matched database entries while 27 clones were novel. Forty-two and 47 different genes were identified as differentially expressed in day 1 and day 5 ovaries, respectively, while 7 genes were expressed in both stages of ovaries. Day 5-subtracted library included several genes known as markers far growing follicles, such as ZP2, MATER, and fetuin. Among the genes with assigned functions, 23.8% was associated with cell cycle/apoptosis regulation, 7.1% with cellular structure, 11.9% with metabolism, 26.2% with signal transduction, and 31.0% with gene/protein expression in day 1; while 10.6%, 17.0%, 23.5%, 25.5%, and 23.4% in day 5, respectively. Genes such as GDF-8, Lats2, Septin2, and Weel were the highly expressed genes in PMF, while HSP84, Laminin2, MATER, MTi7, PTP, and Wrn were highly expressed genes in PRIF. We have successfully discovered list of genes expressed in day 1 and day 5 ovaries and confirmed that some of them are differentially expressed in PMF and/or PRIF. Gene expression profile from the present study would provide insight for the future study on the mechanism(s) involved in primordial-primary follicular transition. This work was Supported by Korean Health 21 RND Project, Ministry of Health and Welfare, Korea (01-PJ10-PG6-01GN13-0002).

  • PDF