• Title/Summary/Keyword: Sepia officinalis

Search Result 5, Processing Time 0.019 seconds

Cuttlefish bone/ sepia officinalis (kafe dariya): recovery of long forgotten Unani drug

  • Ansari, Shabnam
    • CELLMED
    • /
    • v.9 no.4
    • /
    • pp.7.1-7.4
    • /
    • 2019
  • A cuttlefish bone is not a bone, but the internal shell of the Cuttlefish/ sepia officinalis, a small, squid-like cephalopod of phylum molusca, an animals of the order Sepiida. Cuttlefish bone comprises up to 90 percent of its content of calcium carbonate with the abundance of different bioinorganic elements such as magnesium, strontium, iron, even trace amounts of copper, zinc, aragonite and ${\beta}$-chitin which makes it extremely valuable and worthwhile to be used for biomedical research. Unani system of medicine has been using cuttlefish bone under the name of 'kafe dariya' for the treatment various disorders and ailments since centuries. Unani scholars were well aware of the valuable medical and cosmetologically aspect of cuttlefish bone. However, the drug has been forgotten for its beneficial effect and went deep away from the scientific researches. The purpose of the present review is to highlight and revive the data on cuttlefish and cuttlefish bone for its morphology, composition, types, pharmacological actions, temperament, therapeutic dosage, contraindications, correctives, alternatives and therapeutic uses with special reference of Unani medicine to attain its the beneficial features in biomedical sciences.

Fractionation and Enzymatic Characterization of Endoprotease and Exopeptidase from Crude Extracts of Cuttlefish Sepia officinalis Hepatopancreas

  • Kim, Min Ji;Kim, Hyeon Jeong;Kim, Ki Hyun;Heu, Min Soo;Lee, Jung Suck;Kim, Jin-Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.15 no.4
    • /
    • pp.283-291
    • /
    • 2012
  • This study examines the optimal fractionation method and conditions for the isolation of endoprotease- and exopeptidase-active fractions from crude extracts of cuttlefish hepatopancreas (HP) using four fractionation methods: ammonium sulfate fractionation (ASF), polyethylene glycol fractionation (PGF), ion exchange chromatography (IEC), and gel filtration chromatography (GFC). Total endoprotease activity highest in the fraction II (concentrate of fractions 34-42; 842.60 U) of GFC, followed by fraction III (40-60% ammonium sulfate fraction; 670.25 U) of ASF, fraction I (concentrate of fractions 8-12; 436.89 U) of IEC, and fraction II (10-20% polyethylene glycol; 307.31 U) of PGF. Total exopeptidase activity of these fractions was highest in fraction II (2,704.70 U) of GFC, fraction III (2,110.50 U) of ASF, fraction III (1,605.60 U) of PGF, and fraction II (concentrate of fractions 38-44; 1,196.22 U) of IEC. These results showed that fraction II of GFC had the highest activity toward both exopeptidase and endoprotease, with exopeptidase activity being 3.21 times higher than of endoprotease. These results suggest cuttlefish HP could be used as a potential source for the extraction of exopeptidase, an enzyme capable of catalyzing the cleavage of N- and C-terminal amino acids in polypeptides, Like endoprotease, the most efficient method for separating exopeptide-active fractions was GFC.

Analysis of Radiolytic Products of Lipid for the Detection of Irradiated Dried Cuttle Fish (Sepia officinalis) (건 갑오징어의 방사선 조사여부를 판별하기 위한 지방분해산물 분석)

  • Kim, Jun-Hyoung;Kim, Kyoung-Su
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.1072-1078
    • /
    • 2003
  • Radiation-induced hydrocarbons and 2-alkylcycolbutanones are formed from the fatty acids of irradiated fat. These radiation-induced compunds were detected by fat extraction with a Soxtec apparatus from dried cuttle fish (Sepia officinalis), isolation of hydrocarbons and 2-alkylcyclobutanones with florisil column chromatography, and identification of GC/MS. Concentration of hydrocarbons produced by -λ-irradiation depended on the composition of fatty acid in dried cuttle fish. The major hydrocarbons in the irradiated dried cuttle fish samples were pentadecane and 1-tetradecene from palmitic acid, heptadecane and 1-hexadecene from stearic acid, and 8-heptadecen and 1,7-hexadecadiene from oleic acid. Of 2-alkylcyclobutanones, 2-dodecylcyclobutanone from palmitic acid was present at the highest level in irradiated dried cuttle fish. The radiation-induced hydrocarbons and 2-alkylcyclobutanones from the irradiated dried cuttle fish were detected at 0.5 kGy and over, but not detected in the non-irradiated fish.

Endoprotease and Exopeptidase Activities in the Hepatopancreas of the Cuttlefish Sepia officinalis, the Squid Todarodes pacificus, and the Octopus Octopus vulgaris Cuvier

  • Kim, Min Ji;Kim, Hyeon Jeong;Kim, Ki Hyun;Heu, Min Soo;Kim, Jin-Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.15 no.3
    • /
    • pp.197-202
    • /
    • 2012
  • This study examined and compared the exopeptidase and endoprotease activities of the hepatopancreas (HP) of cuttlefish, squid, and octopus species. The protein concentration in crude extract (CE) from octopus HP was 3,940 mg/100 g, lower than those in CEs from squid HP (4,157 mg/100 g) and cuttlefish HP (5,940 mg/100 g). With azocasein of pH 6 as a substrate, the total activity in HP CE of octopus was 31,000 U, lower than the values for cuttlefish (57,000 U) and squid (69,000 U). Regardless of sample type, the total activities of the CEs with azocasein as the substrate were higher at pH 6 (31,000-69,000 U) than at pH 9 (19,000-34,000 U). With L-leucine-p-nitroanilide (LeuPNA) of pH 6 as the substrate, the total activity of the HP CE from octopus was 138,000 U, higher than values from both cuttlefish HP (72,000 U) and squid HP (63,000 U). Regardless of sample type, the total activities of the CEs with LeuPNA as the substrate were higher at pH 6 (63,000-138,000 U) than at pH 9 (41,000-122,000 U). With LeuPNA as the substrate, the total activities of the CEs from octopus HP and cuttlefish HP were higher at pH 6 than at pH 9. However, there was no difference in total activity between pH 6 and 9 for squid HP CE with LeuPNA as the substrate. These results suggest that the octopus HP is superior to the cuttlefish HP and squid HP as a potential resource for extracting exopeptidases. Exopeptidases from octopus HP have potential industrial applications and their use might aid in reducing pollution related to the octopus industry.

Analysis of Stomach Contents of Marine Orgnaisms in Gwangyang Bay and Yeosu Fish Market Using DNA Metabarcoding (DNA 메타바코딩을 이용한 광양만 및 어시장 해양 생물 위 내용물 분석)

  • Gun Hee Oh;Yong Jun Kim;Won-Seok Kim;Cheol Hong;Chang Woo Ji;Ihn-Sil Kwak
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.4
    • /
    • pp.368-375
    • /
    • 2022
  • Gut contents analysis is essential to predict the impact of organisms on food source changes due to variations of the habitat environment. Previous studies of gut content analysis have been conducted using traditional methods, such as visual observation. However, these studies are limited in analyzing food sources because of the digestive process in gut organ. DNA metabarcoding analysis is a useful method to analyze food sources by supplementing these limitations. We sampled marine fish of Pennahia argentata, Larimichthys polyactis, Crangon affinis, Loligo beka and Sepia officinalis from Gwangyang Bay and Yeosu fisheries market for analyzing gut contents by applying DNA metabarcoding analysis. 18S rRNA v9 primer was used for analyzing food source by DNA metabarcoding. Network and two-way clustering analyses characterized the relationship between organisms and food sources. As a result of comparing metabarcoding of gut contents for P. argentata between sampled from Gwangyang Bay and the fisheries market, fish and Copepoda were analyzed as common food sources. In addition, Decapoda and Copepoda were analyzed as common food sources for L. polyactis and C. affinis, respectively. Copepoda was analyzed as the primary food source for L. beka and S. officinalis. These study results demonstrated that gut contents analysis using DNA metabarcoding reflects diverse and detailed information of biological food sources in the aquatic environment. In addition, it will be possible to provide biological information in the gut to identify key food sources by applying it to the research on the food web in the ecosystem.