• Title/Summary/Keyword: Separator efficiency

Search Result 153, Processing Time 0.021 seconds

Numerical Simulation on the Performance of Axial Vane Type Gas-Liquid Separator with Different Guide Vane Structure

  • Yang, Fan;Liu, Ailan;Guo, Xueyan
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.1
    • /
    • pp.86-98
    • /
    • 2017
  • In order to obtain high efficiency and low resistance droplet separation apparatus, axial vane type gas-liquid separators with different guide vanes were designed, and the RNG $k-{\varepsilon}$ model as well as discrete phase model (DPM) were used to investigate the flow pattern inside the separators. It was shown that the tangential velocity distribution under different guide vanes have Rankine vortex characteristics, pressure distribution exhibits a high similarity which value becomes big as the increase of the blade outlet angle and the decrease of the guide vane numbers. The increase of the guide vane numbers and the decrease of the blade outlet angle could make separation improve significantly. The separation efficiency is almost 100% when the droplet diameter is bigger than $40{\mu}m$.

An Experimental Study on the Parallel plate Arrangement and Oil/water Separation Efficiency for Plate type Oily water Separator (분리판식 유수분리기의 평행판 배열과 유수분리 효율에 관한 실험적 연구)

  • Han Won-Hui;Kim Gwang-Su;Lee Jin-Yeol
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.2
    • /
    • pp.52-60
    • /
    • 2001
  • The need to control the oil content in oily bilge water discharges to meet the increasing stringent seawater pollution standards has led to the development of gravity type separators. Among the several gravitational methods, a plate type oily water separator can be used as an assistant equipment for the oil filtering system to meet the present IMO standard of 15 ppm, because it is believed to be an efficient method dealing with a large amount of rich oil with high specific gravity. The purpose of this paper is to examine the efficiency of oil/water separation with the characteristics of separating plate arrangement. An experimental study was carried out to analyse an efficient treatment oil-water mixture with variation of operating parameters, including flow rates, inlet oil concentrations and the height between the plates. The experimental results show that the height between the plates has a significant effect on the separation efficiency. The best efficiency was acquired when the ration of the height between the plates the plates to distance(H/Ci) was 2 with lower inlet oil concentration and lower flow rate.

  • PDF

Effects of Operating Variables on Separation Rate and Separation Efficiency in Ash Separator for Solid Fuel Chemical Looping Combustor (고체연료 매체순환연소기를 위한 회재분리기에서 분리속도 및 분리효율에 미치는 조업변수들의 영향)

  • RYU, HOJUNG;LEE, DONGHO;YOON, JOOYOUNG;JANG, MYOUNGSOO;BAE, DALHEE;PARK, JAEHYEON;BAEK, JEOMIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.2
    • /
    • pp.211-219
    • /
    • 2016
  • To develop an ash separator for the solid fuel chemical looping combustion system, effects of operating variables such as solid injection nozzle velocity, diameter of solid injection nozzle, gap between solid injection line and vent line, vent line inside diameter, and solid intake height on solid separation rate and solid separation efficiency were measured and discussed using heavy and coarse particle and light and fine particles mixture as bed material in an acrylic fluidized bed apparatus. The solid separation rate increased as the solid injection nozzle velocity and the diameter of solid injection nozzle increased. However, the solid separation rate decreased as the gap between solid injection line and vent line, the vent line inside diameter, and the solid intake height increased. The solid separation efficiency was in inverse proportion to the solid separation rate. In this study, we could get high solid separation rate up to 2.39 kg/hr with 91.6% of solid separation efficiency.

Study on a Separator for the All-vanadium Redox Flow Battery (바나듐 레독스-흐름 전지용 격막에 관한 연구)

  • Lee, Sang-Ho;Kim, Joeng-Geun;Choi, Sang-Il;Hwang, Gab-Jin;Jin, Chang-Soo
    • Membrane Journal
    • /
    • v.19 no.2
    • /
    • pp.129-135
    • /
    • 2009
  • The cation exchange membrane using the block co-polymer of polysulfone and polyphenylenesulfidesulfone was prepared for a separator of all-vanadium redox flow battery. The membrane property of the prepared cation exchange membrane was measured. The thermal stability of the prepared cation exchange analyzed by TG showed a more stable than that of Nafion117. The lowest measured membrane resistance, equilibrated in 1mol/L $H_2SO_4$ aqueous solution, $0.96{\cdot}cm^2$ at 3 cc of CSA (chlorosulfuricacid) which was introduction agent of ion exchange group. Electrochemical property of all-vanadium redox flow battery using the prepared cation exchange membrane was measured. Electromotive force in 100% of state of charge was 1.4 V which was that of all-vanadium redox flow battery, and cell resistance in charge and discharge at each state of charge had a low value compared with that of all-vanadium redox flow battery using Nafion117.

A Study on the Separation Efficiency of In-line Type Subsea Oil-water Separator (In-line형 심해 유수분리기의 분리 효율에 관한 연구)

  • Kim, Hyun-Ji;Kim, Gwi-Nam;Kim, Young-Ju;Woo, Nam-Sub;Huh, Sun-Chul
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.3
    • /
    • pp.253-260
    • /
    • 2021
  • The implementation of subsea separation and liquid boosting is becoming a common development scheme for the exploration of deep water fields. Subsea separation is an attractive and economic solution to develop deep offshore fields producing fluid without hydrate or wax. A subsea separator can avoid or simplifying costly surface platforms of floating vessels, as well as being an efficient tool to enhance hydrocarbon production. Subsea separation system should be reliable to ensure successful operation in a wide range of 3-phase flow regime. In this study, multiphase flow characteristics inside in-line type subsea separation system are investigated for the design of subsea separation system.

Analysis and Evaluation of Separation Efficiency on Mass Flow of Mini Hydro Cyclone Separator Manufactured by 3D Printing (3D 프린팅을 적용한 미니 하이드로 싸이클론 분리기의 질량유량을 통한 분리효율 해석 및 평가)

  • Yi, Hyung-wook;Lee, Yeo-ul;Lee, Myung-won;Kwon, Je-young;Kang, Myungchang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.7
    • /
    • pp.89-96
    • /
    • 2021
  • In this study, a mini hydro cyclone was designed and manufactured to achieve an inlet flow rate of 2 L/min in the experiment, which was conducted using alumina powder with a specific gravity of 3.97. This hydro cyclone was studied for using in steam and water analysis system (SWAS) of thermal power plant and was manufactured by 3D printing. Numerical analysis was performed with Solidworks Flow Simulation, utilizing the reynolds stress method (RSM) of fluid multiphase flow analysis models. Experimental and numerical analysis were performed under the three conditions of inlet velocity 2.0, 4.0, and 6.0 m/s. The separation efficiency was over 80% at all inlet velocity conditions. At the inlet velocity 4m/s, the separation efficiency was the best, and it was confirmed that the efficiency was more than 90%.

Electrospinning Technology for Novel Energy Conversion & Storage Materials

  • Jo, Seong-Mu;Kim, Dong-Yeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.1.1-1.1
    • /
    • 2011
  • Electrospinning has known to be very effective tool for production of versatile one-dimensional (1D) nanostructured materials such as nanofibers, nanorod, and nanotubes and for easily assembly to two-, three-dimensional(2D, 3D) nanostructures such as thin film, membrane, and nonwoven web, etc. We have studied on the electrospinning technology for novel energy storage and conversion materials such as advanced separator, dye sensitized solar cell, supercapacitor, etc. High heat-resistive nanofibrous membrane as a new separator for future lithium ion polymer battery was prepared by electrospinning of PVdF based composite solution. The novel nanofibrous composite nonwovens have tensile strength of above 50 MPa and modulus of above 1.3 GPa. The internal structure of the electrospun composite nanofiber with a diameter of few hundreds nanometer were composed of core-shell nanostructure. And also electrospun $TiO_2$ nanorod/nanosphere based dye-sensitized solar cells with high efficiency are successfully prepared. Some battery performance will be introduced.

  • PDF

The corrosion-resistant of Al-coated xstainless in molten carbonate (알루미늄 코팅처리 스테인레스강의 융탄산염 내부식성)

  • 조남웅;장세기;전재호;신정철
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.1
    • /
    • pp.3-11
    • /
    • 1998
  • Molten Carbonate Fuel cell is a promising new type electric power generation system which can achieve high efficiency, lower matrrial cost and high operating temperature Making internal reforming possible. Although the development of the MCEC is progressing rapidly toward commercialization, two important tchological problems such as dissolution of NiO cathode and not corrosion of metallic separator plate must be resolved. Because MCFC is operated at $650^{\circ}C$ and the electrolyte is very corrosive, corrosion-resistance of separator plated against oxidation abd molten carbonate is required. Al-coating on separator material for corrosion-resistance was carried out by painting, thermal spraying. hot dipping and vacuum vapour deposition. The corrosion of Al-coated STS 316S and 316L in molten carbonate at $700^{\circ}C$was studied. Vacuum vapour deposition and thermal spraing for Al-coating on STS 310S and 316L were the most effective methods for protecting thestainless steel corrosion in molten carbonate.

  • PDF

Removal Efficiency of Water Contents using Inertial Impaction Separator with Change in Relative Humidity (입구 습도 변화에 따른 관성 충돌 방식의 액적 분리장치의 수분제거효율 변화)

  • Song, Dong Keun;Lee, Sin Young;Hong, Won Seok;Shin, Wanho;Kim, Gyujin;Kim, Hanseok
    • Particle and aerosol research
    • /
    • v.9 no.4
    • /
    • pp.247-252
    • /
    • 2013
  • Removal of water contents in a gas is needed in industrial field of gas processing related on energy production/conversion, and environmental treatment. Inertial separators are economic devices for separating droplets from the gas stream. For design and incorporation of inertial pre-treatment separator, characteristics of removal of water contents with various operation conditions are needed. In this study, removal efficiency of water droplets at various flowrates (5-14 SCMM) and relative humidity (R.H.) conditions (40%, and 90%) has been investigated. At low R.H. condition, the removal characteristic is similar to the removal of solid particles. But, droplet growth resulting from the condensation of water vapor at high R.H. condition, is significant and it made increase in removal efficiency of droplet phase of water contents. For rapid removal of water contents, an effective method to enhancing condensation growth of water droplets is highly needed.

A Parametric Study for the Design of Gas-Liquid Centrifugal Separator (기체-액체 원심분리기의 설계를 위한 매개변수 연구)

  • Nagdewe, Suryakant;Lee, S.J.;Kim, H.D.;Kim, D.S.;Kwak, K.M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.218-219
    • /
    • 2008
  • A gas-liquid centrifugal separator is widely used in industry because of its simple geometry and little maintenance. Also, these separators have considerable advantages over filters, scrubbers or precipitators in term of compact design, low pressure drop and higher capacity. A gas-liquid centrifugal separator is a device that utilizes centrifugal force and low pressure to separate liquid from gas by density difference. Design parameters such as length of separation space, swirl vane exit angle, inlet to outlet pipe diameter ratio, models for separation efficiency and low pressure drop as a function of physical dimension are not available in literature. In present study, length of separation space (from vane to gas exit opening) has been studied using CFD. The 3-D Navier-Stokes equations are numerically solved using a fully implicit finite volume scheme. Based upon the obtained solutions, tangential velocities, centrifugal forces, vortices and total pressure losses are analyzed to find the best design parameters.

  • PDF