• Title/Summary/Keyword: Separator effect

Search Result 103, Processing Time 0.029 seconds

An Effect of Laminated Plate on the Performance of Pre-separator for Marine Oily Water Separator (선박 유수분리기 전처리 장치 성능에 미치는 적층판의 영향)

  • 이진열;한원희
    • Tribology and Lubricants
    • /
    • v.16 no.6
    • /
    • pp.440-447
    • /
    • 2000
  • It's a tendency to strengthen related international laws as the importance on marine oil pollution recently becomes the issue. According to the regulation of IMO, oil discharge from ships is allowed under 15 ppm only and oil filtering equipment is essential. However, for large ships using heavy fuel oil of over S.G 0.98 and viscosity 380 cSt and system oil, it has been in difficulty to process with existing filtering type of oily water separator. Oily water pre-separator of laminated plate type which is one of gravity type separator has very simple structure and it also makes easier to maintain and repair. In another words, it fits well to process large amount of rich oil with high specific gravity. In this paper, oily water pre-separator of laminated plate type has been studied. The function of emulsified oil and 4 different types of oil have been analyzed and each character has been investigated and proved by experiments. As the result of it, the efficiency of separating oil water has been advanced by 10% in case equipped with pre-separator. In addition, the higher temperature is and the more laminated plate has, it turns out to be getting more effect.

Conceptual Design of Sandglass-like Separator for Immobilized Anionic Radionuclides Using Particle Tracking Based on Computational Fluid Dynamics

  • Park, Tae-Jin;Choi, Young-Chul;Ham, Jiwoong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.3
    • /
    • pp.363-372
    • /
    • 2020
  • Anionic radionuclides pose one of the highest risks to the long-term safety assessments of disposal repositories. Therefore, techniques to immobilize and separate such anionic radionuclides are of crucial importance from the viewpoints of safety and waste volume reduction. The main objective of this study is to design a separator with minimum pressure disturbance, based on the concept of a conventional cyclone separator. We hypothesize that the anionic radionuclides can be immobilized onto a nanomaterial-based substrate and that the particles generated in the process can flow via water. These particles are denser than water; hence, they can be trapped within the cyclone-type separator because of its design. We conducted particle tracking analysis using computational fluid dynamics (CFD) for the conventional cyclone separator and studied the effects due to the morphology of the separator. The proposed sandglass-like design of the separator shows promising results (i.e., only one out of 10,000 particles escaped to the outlet from the separation zone). To validate the design, we manufactured a laboratory-scale prototype separator and tested it for iron particles; the efficiency was ca. 99%. Furthermore, using an additional magnetic effect with the separator, we could effectively separate particles with ~100% efficiency. The proposed sandglass-like separator can thus be used for effective separation and recovery of immobilized anionic radionuclides.

A Separator with Activated Carbon Powder Layer to Enhance the Performance of Lithium-Sulfur Batteries

  • Vu, Duc-Luong;Lee, Jae-Won
    • Journal of Powder Materials
    • /
    • v.25 no.6
    • /
    • pp.466-474
    • /
    • 2018
  • The high theoretical energy density ($2600Wh\;kg^{-1}$) of Lithium-sulfur batteries and the high theoretical capacity of elemental sulfur ($1672mAh\;g^{-1}$) attract significant research attention. However, the poor electrical conductivity of sulfur and the polysulfide shuttle effect are chronic problems resulting in low sulfur utilization and poor cycling stability. In this study, we address these problems by coating a polyethylene separator with a layer of activated carbon powder. A lithium-sulfur cell containing the activated carbon powder-coated separator exhibits an initial specific discharge capacity of $1400mAh\;g^{-1}$ at 0.1 C, and retains 63% of the initial capacity after 100 cycles at 0.2 C, whereas the equivalent cell with a bare separator exhibits a $1200mAh\;g^{-1}$ initial specific discharge capacity, and 50% capacity retention under the same conditions. The activated carbon powder-coated separator also enhances the rate capability. These results indicate that the microstructure of the activated carbon powder layer provides space for the sulfur redox reaction and facilitates fast electron transport. Concurrently, the activated carbon powder layer traps and reutilizes any polysulfides dissolved in the electrolyte. The approach presented here provides insights for overcoming the problems associated with lithium-sulfur batteries and promoting their practical use.

A Numerical Study for Optimum Design of Dust Separator Screen Based on Coanda Effect (코안다효과를 이용한 제진기 스크린의 최적설계를 위한 수치적 연구)

  • Yun, Seong-Min;Kim, Yong-Sun;Shin, Hee-Jea;Ko, Sang-Cheol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.177-185
    • /
    • 2018
  • There is a need to study dust separator screens with good drainage efficiency while effectively filtering suspended solids and other contaminants entering the intake pumping station, the drainage pumping station and the mediation pumping station, the cooling water inlet of the power plant, and the like. In this paper, Numerical studies were conducted for the optimal design of the dust separator screen using the Coanda effect. The shape of the dust separator screen is important, such as the right curvature radius $R_1$ at the top of the dust separator screen and the left curvature radius $R_2$ at the top, h is the height difference and shape between the screen and the accelerating plate, and ${\theta}$ is the inclination angle of the screen. A total of 4 shape factors were set and the effects of Coanda and drainage performance of each element were compared and analyzed, the optimum length and size of each shape element were derived by classifying the shape elements into direct and indirect influences. Finally, it was possible to effectively filter foreign matter by narrowing the screen spacing, and the drainage performance was analyzed and optimized through numerical studies of dust separator screen.

The effect of design parameters on the pulverized coal separator efficiency (미분탄 분리장치의 성능에 영향을 미치는 설계인자)

  • Lee, Gun-Myung;Ha, Jong-Kwang;Ahn, Sang-Taek;Lee, Ik-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.385-389
    • /
    • 2003
  • Three-dimensional experimental analysis was conducted in the pulverizer simplified isothermal model. The experiment model was constructed on a 1/3.5 scale of 500MW pulverizer. The purpose of this study is to investigate the effect of design parameters on the pulverized coal separator efficiency. Where used pulverized coal separator design parameters are guide vane angle, static classifier angle, dynamic classifier rpm. Taguchi method was used to find the effective design parameters related to pulverized coal separator efficiency. The results of the experiment showed that guide vane angle and dynamic classifier rpm were the design key parameters. In addition to the total number of experiment cases were reduced by Taguchi method.

  • PDF

Effects of Aerobic Granular Sludge Separator on the Stability of Aerobic Granular Sludge (AGS) (호기성 그래뉼 슬러지 선별 분리기가 호기성 그래뉼 슬러지의 안정성에 미치는 영향)

  • Kwon, Gyutae;Kim, Hyun-Gu;Ahn, Dae-Hee
    • Journal of Environmental Science International
    • /
    • v.30 no.12
    • /
    • pp.1081-1092
    • /
    • 2021
  • In this study, the effect on the stability of Aerobic Granular Sludge (AGS) caused by an AGS separator was investigated. The AGS separator was a hydrocyclone. The main factors of the AGS separator were filter pore size (0.125~0.600 mm), conical-to-cylindrical ratio (1.5~3.0), and operating time (1~20 min). The AGS/mixed liquor suspended solid (MLSS) ratio gradually increased to 0.500 mm (AGS/MLSS: 84.3±3.0%). AGS was best separated at the conical-to-cylindrical ratio of 2.5 (AGS/MLSS: 84.7±3.3%). As the operating time increased, the AGS separation performance also tended to increase. The shortest AGS separator run time, but the highest AGS separation performance was 10 min (87.0±2.5%). AGS stability was evaluated by operating the selected AGS separator and sequencing batch reactor. The average removal efficiencies of TOC, TCODCr, SS, TN, and TP were 95.7%, 96.9%, 93.0%, 89.0%, and 96.2%, respectively, which met the effluent standards in Korea. In addition, the AGS/MLSS ratio tended to remain constant, and the sludge volume index demonstrated a tendency to decrease from 140 mL/g to 70 mL/g. During the operation, the particles of AGS in optical microscope observations gradually increased.

The Effect of Polymer Blending and Extension Conditions on the Properties of Separator Prepared by Wet Process for Li-ion Secondary Battery (고분자 블렌딩 및 연신조건이 리튬 이온전지용 습식 Separator의 물성에 미치는 영향)

  • 문성인;손영수;김순식;김진열
    • Polymer(Korea)
    • /
    • v.26 no.1
    • /
    • pp.45-52
    • /
    • 2002
  • The separator made from the blends of high density polyethylene (HDPE) and ultrahigh molecular weight polyethylene (UHMWPE) was prepared by wet processing to use as Li-ion secondary battery. We investigated effects of the blending of the polymers and the film extension on the mechanical properties of the separator. The mechanical strength of separator increased with increasing molecular weights and contents of UHMWPE, for instance about $1000 kg/\textrm{cm}^2$ with the five times extended film of 6 wt% UHMWPE. The pores of the separator were very uniform with the size of 0.1~$0.12\mu\textrm{m}$. The shut-down characteristic quickly increased at around $130^{\circ}C$ and the fusion temperature was $160^{\circ}C$, so it could be applied to the lithium ion secondary battery.

Development of a prediction model relating the two-phase pressure drop in a moisture separator using an air/water test facility

  • Kim, Kihwan;Lee, Jae bong;Kim, Woo-Shik;Choi, Hae-seob;Kim, Jong-In
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.3892-3901
    • /
    • 2021
  • The pressure drop of a moisture separator in a steam generator is the important design parameter to ensure the successful performance of a nuclear power plant. The moisture separators have a wide range of operating conditions based on the arrangement of them. The prediction of the pressure drop in a moisture separator is challenging due to the complexity of the multi-dimensional two-phase vortex flow. In this study, the moisture separator test facility using the air/water two-phase flow was used to predict the pressure drop of a moisture separator in a Korean OPR-1000 reactor. The prototypical steam/water two-phase flow conditions in a steam generator were simulated as air/water two-phase flow conditions by preserving the centrifugal force and vapor quality. A series of experiments were carried out to investigate the effect of hydraulic characteristics such as the quality and liquid mass flux on the two-phase pressure drop. A new prediction model based on the scaling law was suggested and validated experimentally using the full and half scale of separators. The suggested prediction model showed good agreement with the steam/water experimental results, and it can be extended to predict the steam/water two-phase pressure drop for moisture separators.

Numerical investigation of ceramic particle movement for injected gas flow rate in cyclone separator system (사이클론 분리기 시스템 내에서의 가스 주입 유속에 따른 세라믹 입자 거동 전산모사)

  • 우효상;심광보;정용재
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.3
    • /
    • pp.145-151
    • /
    • 2003
  • Using computational fluid dynamics (CFD) method, we investigated three-dimensional fluid flow field and particle movement with respect to the injected gas flow rate variation in typical cyclone separator system. The results of numerical investigation were deduced by coupling the analysis of fluid flow field with Wavier-stokes equation and the tracking of the particle trajectory with Langrangian approach. It was shown that the increasing of injected gas flow rate resulted in the increasing of pressure loss in the separator. This change of inner pressure had an effect on an aspect of the fluid flow in the separator. Particle movement was determined by fluid flow in the separator and was fully depended on a diameter of particles under the fixed flow rate. Increasing of injected gas flow rate was led to an increasing of the trace of particle, so the particles moved to the lower part of the separator. For this reason, the minimum diameters of the particles were decreased and increased the separation rate under the fixed particle diameter. In conclusion, the changes of injected gas flow rate have an important factor to the fluctuation of the fluid flow field and particle trajectory in the separator.

An experimental study for the coal particle separator in the pulverizer model with dynamic classifier (Dynamic classifier가 장착된 미분기 모델에서의 석탄 입자 분리 실험)

  • Lee, Gun-Myung;Kim, Hyuk-Je;Kim, Hyeuk-Pill;Kim, Sang-Hyeun;Ha, Jong-Kang
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.688-692
    • /
    • 2001
  • Three-dimensional experimental analyses were conducted in the pulverizer simplified isothermal model. The experimental model was constructed on a 1/3.5 scale of 500MW pulverized coal boiler. The purpose of this study is to investigate the characteristics of coal particle separator and the pressure loss in the pulverizer models with dynamic classifier. Without regards a shape of separator top, the results showed that the increase of dynamic classifier rpm was induced in finer coal particle. But the capacity of total mass per minute was reduced. Also, the increase of dynamic classifier rpm had no effect on total pressure loss, but an increase of inlet velocity was induced that the rise of total pressure loss in the pulverizer models with dynamic classifier.

  • PDF