• Title/Summary/Keyword: Separator Properties

Search Result 92, Processing Time 0.026 seconds

The Role of Microporous Separator in Lithium Ion Secondary Battery (리튬이온 이차전지에서의 미세다공성 격리막의 역할)

  • 이영무;오부근
    • Membrane Journal
    • /
    • v.7 no.3
    • /
    • pp.123-130
    • /
    • 1997
  • The characteristics of microporous separator for lithium ion secondary battery was introduced. Microporous separator is a key component of a lithium ion secondary battery because its basic properties were related with the performance and safety of the battery. Up to now, stretched microporous polyolefins such as polyethylene(PE) separator were mainly applied. It is still required to enhance wettability and shut-down property. For this purpose, the application of fluorovinylic polymers and surface modification of conventional polyolefinic microporous membrans we being continuously tried.

  • PDF

A Study on the Improvement of the Thermal Stability of a Commercial Polyethylene Separator for Lithium Secondary Battery by an Electron Beam Irradiation (전자선 조사에 의한 리튬 이차전지용 상용 폴리에틸렌 분리막의 내열성 향상에 관한 연구)

  • Sohn, Joon-Yong;Lim, Jong-Soo;Gwon, Sung-Jin;Shin, Jun-Hwa;Choi, Jae-Hak;Nho, Young-Chang
    • Polymer(Korea)
    • /
    • v.32 no.6
    • /
    • pp.598-602
    • /
    • 2008
  • In this study we prepared crosslinked separators with the improved thermal stability by irradiating a commercial polyethylene (PE) separator for lithium secondary battery with an electron beam, and the thermal and mechanical properties of the prepared separators were evaluated as a function of the absorption dose. The thermal shrinkage of electron beam irradiated separator was decreased with increasing absorption dose. As a result of the shutdown behavior using an AC impedance, it was observed that the irradiated separator had the better shutdown function than the unirradiated separator. The modulus of the irradiated separator was enhanced as the absorption dose was increased, while the tensile strength and the break elongation of the irradiated separator were decreased.

SiO2/styrene butadiene rubber-coated poly(ethylene terephthalate) nonwoven composite separators for safer lithium-ion batteries

  • Lee, Jung-Ran;Won, Ji-Hye;Lee, Sang-Young
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.51-56
    • /
    • 2011
  • We develop a new nonwoven composite separator for a safer lithium-ion battery, which is based on coating of silica ($SiO_2$) colloidal particles/styrene-butadiene rubber (SBR) binder to a poly(ethylene terephthalate) (PET) nonwoven support. The $SiO_2$ particles are interconnected by the SBR binder and closely packed in the nonwoven composite separator, which thus allows for the development of unusual porous structure, i.e. highly-connected interstitial voids formed between the $SiO_2$ particles. The PET nonwoven serves as a mechanical support that contributes to suppressing thermal shrinkage of the nonwoven composite separator. The $SiO_2$/SBR content in the nonwoven composite separators plays an important role in determining their separator properties. Porous structure, air permeability, and electrolyte wettability of the nonwoven composite separators, in comparison to a commercialized polyethylene (PE) separator, are elucidated as a function of the $SiO_2$/SBR content. Based on this understanding of the nonwoven composite separators, the effect of $SiO_2$/SBR content on the electrochemical performances such as self-discharge, discharge capacity, and discharge C-rate capability of cells assembled with the nonwoven composite separators is investigated.

Optimal Operational Characteristics of Wastewater Treatment Using Hydrocyclone in a Sequencing Batch Reactor Process (연속회분식반응기 공정의 하이드로사이클론 도입 하수처리 최적 운전특성)

  • Kwon, Gyutae;Kim, Hyun-Gu;Ahn, Dae-Hee
    • Journal of Environmental Science International
    • /
    • v.31 no.4
    • /
    • pp.295-309
    • /
    • 2022
  • The purpose of this study was to evaluate the operational characteristics of wastewater treatment using Sequencing Batch Reactor (SBR) with Aerobic Granular Sludge (AGS) separator in the pilot plant. Pilot plant experiments were conducted using SBR with AGS separator and pollution removal efficiencies were evaluated based on the operational condition and surface properties of AGS. The results of the operation on water quality of the effluent showed that the average concentration of total organic carbon, suspended solids, nitrogen, and phosphorus was 6.89 mg/L, 7.33 mg/L, 7.33 mg/L, and 0.2 mg/L, respectively. All these concentrations complied the effluent standard in Korea. The concentration of mixed liquor suspended solid (MLSS) fluctuated, but the AGS/MLSS ratio was constant at 86.5±1.3%. Although the AGS/MLSS ratio was constant, sludge volume index improved. These results suggested that the particle discharged fine sludge and increased the AGS praticle size in the AGS. Optical microscopy revealed the presence of dense AGS at the end of the operation, and particles of > 0.6 mm were found. Compared to those of belt-type AGS separator, the required area and power consumption of the hydrocyclone-type AGS separator were reduced by 27.5% and 83.8%, respectively.

Nano Ceramic Coating on Polypropylene Separator for Safety-Enhanced Lithium Secondary Battery (고안전성 리튬이차전지 구현을 위한 나노 세라믹 코팅 분리막 제조 및 전기화학특성 분석)

  • Lee, Jungmo;Jeon, Hyunkyu;Han, Taeyeong;Ryou, Myung-Hyun;Lee, Yong Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.20 no.2
    • /
    • pp.41-48
    • /
    • 2017
  • Herein, we have fabricated an ultrathin aluminum oxide ($Al_2O_3$) coated PP separator by using a RF sputter deposition process. Approximately 20 nm thickness coating layer on the bare PP separator was formed at the power of 55 W for 2 minutes without thermal damage. Whereas only permeability of the coated separator was degraded slightly, other properties such as thermal stability, uptake amount of liquid electrolyte, and ionic conductivity were improved comparing to the bare PP separator. As a result, an only 20-nm-thick $Al_2O_3$ coating layer could improve the rate capability compared with a bare PP separator under a high current density.

Properties of the Electrolyte Separators for Thermal Batteries Using SiOC Mat (SiOC 매트(Mat)를 이용한 열전지용 전해질 격리판 제조 및 특성)

  • Lim, Kyoung-Hoon;Cho, Kwang-Youn;Riu, Doh-Hyung;Shin, Dong-Geun;Jin, Eun-Ju;Kim, Hyoun-Ee;Cheong, Hae-Won;Lee, Hong-Lim
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.648-652
    • /
    • 2009
  • Ceramic fiber separator is the promising material for thermal battery system because it reduces the production cost and offers the potential to a new application compared to a pellet type electrolyte. The electrolyte separator for thermal battery should be easily handled and loaded a large amount of the molten lithium salt. Ceramic fibers were used as an electrolyte separator and the lithium based molten salts were infiltrated into the ceramic filters. Leakage of molten salt (several lithium salts) leads to short-circuit during the thermal battery operation. In this study, a uniform and fine SiOC mat with fibers ranging from 1 to 3 ${\mu}m$ was obtained by electrospinning of polycarbosilane and pyrolysis. The optimum spinning conditions for obtaining fine diameters of SiOC fiber were controlled by the solution composition and concentration, applied voltage and spinning rate, release rate by porosity. The pore structures of the ceramic filter and the melting properties of the lithium salts affected to the electrolyte loading and leakage. The importance of the fiber size and porosity and their control was discussed and the mechanical properties were also discussed.

Electrochemical Properties of Activated Carbon Supercapacitor Adopting Rayon/Poly(Ethylene Oxide) Separator and a Hydrogel Electrolyte (레이온/폴리에틸렌옥사이드 분리막과 하이드로겔 전해질이 적용된 활성탄 수퍼커패시터 특성)

  • Lee, Hea Soo;Kim, Kwang Man;Jang, Yunseok;Kim, Kwang Young;Yu, Jung Joon;Kim, Jong Huy;Ko, Jang Myoun
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.3
    • /
    • pp.115-120
    • /
    • 2015
  • The mechanical and electrochemical properties of poly(ethylene oxide) (PEO)-coated Rayon separator were characterized using potassium polyacrylate (PAAK)-KOH electrolyte. The supercapacitive properties of activated carbon supercapacitor adopting the Rayon/PEO separator and PAAK-KOH electrolyte was also tested. As the PEO content increased, the mechanical strength increased. Room-temperature ionic conductivity of over $10^{-2}S\;cm^{-1}$ was obtained at the PEO content lower than 5 wt.%, applicable to a supercapacitor. As a result, the specific capacitance at $1000mV\;s^{-1}$ of the activated carbon supercapacitor adopting the Rayon/PEO separator and PAAK-KOH electrolyte was highly stable after 1000th cycle. This was due to high rate-capability provided by the fact that PEO coating could fix the entanglements among fiber filaments of Rayon.

Separator Properties of Silk-Woven Fabrics Coated with PVdF-HFP and Silica and the Charge-Discharge Characteristics of Lithium-ion Batteries Adopting Them (PVdF-HFP와 실리카가 코팅된 실크 견직물의 분리막 특성과 이를 채용한 리튬이온전지의 충방전 특성)

  • Oh, Seem Geon;Lee, Young-Gi;Kim, Kwang Man;Lee, Yong Min;Kim, Sang Hern;Kim, Yong Joo;Ko, Jang Myoun
    • Korean Chemical Engineering Research
    • /
    • v.51 no.3
    • /
    • pp.330-334
    • /
    • 2013
  • Mixtures of poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) and silica nanoparticles are coated on the surface of a silk fabrics separator. The coated separators are finally prepared by injecting an electrolyte solution and then characterized for use of lithium-ion battery separator/electrolyte. In the preparation, various contents of dibutylphthalate (DBP) as a plasticizer are used to enhance the formation of micropores within the coated membrane. The coated silk fabrics separators are characterized in terms of ionic conductivity, drenching rate, and electrochemical stability, and the charge-discharge profiles of lithium-ion batteries adopting the coated separators are also examined. As a result, the coated silk fabrics separator prepared using DBP 40~50 wt% and silica shows the superior separator properties and high-rate capability. This is due to (i) high sustainability of silk fabrics, (ii) the formation of micropores with the coated layer membrane by DBP, (iii) increase in drenching rate by silica nanoparticles to involve great enhancements in specific surface area and ionic conductivity.

A Study on the Optimization of α-Al2O3 Powder Manufacturing for the Application of Separators for Lithium-Ion Secondary Batteries (리튬이차전지용 분리막 적용을 위한 α-알루미나 분말 제조 최적화 연구)

  • Dong-Myeong Moon;Da-Eun Hyun;Ji-Hui Oh;Jwa-Bin Jeon;Yong-Nam Kim;Kyoung-Hoon Jeong;Jong-Kun Lee;Sang-Mo Koo;Dong-Won Lee;Jong-Min Oh
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.6
    • /
    • pp.638-646
    • /
    • 2023
  • Recently, active research has been conducted to enhance the power characteristics and thermal stability of lithium-ion batteries (LiBs) by modifying separators using a ceramic coating method. However, since the thermal properties and surface features of the separator vary depending on the characteristics of the ceramic powders applied to the separator, it is crucial to manufacture ceramic powders optimized for the separator's performance. In this study, we evaluated the characteristics of three types of α-alumina (A-1, A-2, and A-3) produced with varying dispersant contents and milling times, in addition to commercial α-alumina (AES-11). Subsequently, the optimized powders (A-3) were coated onto the separator using an aqueous binder for comparison with the characteristics of an AES-11 coated separator and an uncoated PE separator. The A-3 coated separator improved electrolyte wettability with a low contact angle (44.69°) and increased puncture strength (538 gf). Furthermore, it exhibited excellent thermal stability, with a shrinkage value of 5.64% when exposed to 140℃ for 1 hour, compared to the AES11 coated separator (6.09%) and the bare PE separator (69.64%).

Pulsating fluid induced dynamic stability of embedded viscoelastic piezoelectric separators using different cylindrical shell theories

  • Pour, H. Rahimi;Arani, A. Ghorbanpour;Sheikhzadeh, Gh.
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.499-512
    • /
    • 2017
  • This paper deals with nonlinear dynamic stability of embedded piezoelectric nano-composite separators conveying pulsating fluid. For presenting a realistic model, the material properties of structure are assumed viscoelastic based on Kelvin-Voigt model. The separator is reinforced with single-walled carbon nanotubes (SWCNTs) which the equivalent material properties are obtained by mixture rule. The separator is surrounded by elastic medium modeled by nonlinear orthotropic visco Pasternak foundation. The separator is subjected to 3D electric and 2D magnetic fields. For mathematical modeling of structure, three theories of classical shell theory (CST), first order shear deformation theory (FSDT) and sinusoidal shear deformation theory (SSDT) are applied. The differential quadrature method (DQM) in conjunction with Bolotin method is employed for calculating the dynamic instability region (DIR). The detailed parametric study is conducted, focusing on the combined effects of the external voltage, magnetic field, visco-Pasternak foundation, structural damping and volume percent of SWCNTs on the dynamic instability of structure. The numerical results are validated with other published works as well as comparing results obtained by three theories. Numerical results indicate that the magnetic and electric fields as well as SWCNTs as reinforcer are very important in dynamic instability analysis of structure.