• Title/Summary/Keyword: Separation of particles

Search Result 450, Processing Time 0.031 seconds

Surface reactive micro/nano particles on inorganic oxygen separation membrane

  • Lee, Kee-Sung;Shin, Tae-Ho;Lee, Shiwoo;Woo, Sang-Kuk;Yang, Jae-Kyo;Choa, Yong-Ho
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.94-97
    • /
    • 2004
  • Micro/nano-sized L $a_{0.6}$S $r_{0.4}$Co $O_{3-}$$\delta$/ particles are considered to improve oxygen permeability in highly selective inorganic oxygen separation membrane. A L $a_{0.7}$S $r_{0.3}$G $a_{0.6}$F $e_{0.4}$ $O_{3-}$$\delta$/ membrane with perovskite structure is fabricated by a conventional solid-state reaction. As the oxygen permeation flux of the L $a_{0.7}$S $r_{0.3}$G $a_{0.6}$F $e_{0.4}$ $O_{3-}$$\delta$/ membrane was lower than commercial gas separation membranes, we coated the L $a_{0.6}$S $r_{0.4}$Co $O_{3-}$$\delta$/ particles to enhance the oxygen permeation flux. It has been demonstrated that the effective area of reactive free surface is an important factor in determining the effectiveness of the introduction of coating layer for oxygen permeation. The introduction of micro/nano L $a_{0.6}$S $r_{0.4}$Co $O_{3-}$$\delta$/ particles was very effective for increasing oxygen flux, as the flux was as much as 2 to 6 times higher than that of an uncoated L $a_{0.7}$S $r_{0.3}$G $a_{0.6}$F $e_{0.4}$ $O_{3-}$$\delta$/ membrane.\delta$/ membrane.>/ membrane.brane.

  • PDF

The removal of iron oxides from raw materials by superconducting magnetic separator (초전도 자기분리에 의한 원재료에서의 철산화물 제거)

  • Kwon, Jun-Mo;Ha, Dong-Woo;Kim, Tae-Hyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.193-193
    • /
    • 2010
  • Magnetic separation is expected to be applied for material refinement as an important supporting technology. In the superconducting magnetic separation, the cohesive force between particles is strong compared with that in the other magnetic separation. The use of high magnetic field by the superconducting magnet enhances the magnetic substance capture ability of the magnetic separation. Industrial raw materials was used for the superconducting magnetic separation. Cry-cooled, NB-Ti superconducting magnet with. 100 mm room temperature bore and 600 mm of height was used for magnetic separator.

  • PDF

Treatment of Rolled Steel Coolant Wastewater by Superconducting High Gradient Magnetic Separation

  • Kim, Tea-Hyung;Ha, Dong-Woo;Oh, Sang-Soo;Kim, Ho-Sup;Ko, Rock-Kil;Lee, Nam-Jin;Kwon, Jun-Mo;Kim, Young-Hun;Kung, Chae-Hun;Ha, Tae-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.354-354
    • /
    • 2009
  • We have developed the prototypes of superconducting magnetic separation system with high temperature superconductor wire. This separation filter system consist of magnetized matrix SUS430 wire and acrylic frame. This study introduced rolled steel process coolant wastewater applied superconductor HGMS(High Gradient Magnetic Separation). HGMS treatment have acted high efficient method for various wastewater. We have surveyed superconducting magnetic separation technology and reviewed the status of related industries using applied superconductivity. In our basic preliminary experiment using HGMS, it was made clear that the fine para-magnetic particles in the wastewater obtained from rolling process of steel can be separated with high efficiency. We investigated the ability of magnetic flock formation, which used inorganic materials and polymer coagulants. We had a purpose to remove SS of coolant at steel factory. Maximum coagulation remove rate of SS 98%. Removing ratio of $Fe_3O_4$ fine particles in wastewater showed over than 99% in the wastewater containing magnetic fines after four times of repetition of separation.

  • PDF

Magnetic force assisted settling of fine particles from turbid water

  • Hong, H.P.;Kwon, H.W.;Kim, J.J.;Ha, D.W.;Kim, Young-Hun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.2
    • /
    • pp.7-11
    • /
    • 2020
  • When rivers and lakes are contaminated with numerous contaminants, usually the contaminants are finally deposited on the sediments of the waterbody. Many clean up technologies have been developed for the contaminated sediments. Among several technologies dredging is one of the best methods because dredging removes all the contaminated sediments from the water and the contaminated sediments can be completely treated with physical and chemical methods. However the most worried phenomenon is suspension of fine particles during the dredging process. The suspended particle can release contaminants into water and resulted in spread of the contaminants and the increase of risk due to the resuspension of the precipitated contaminants such as heavy metals and toxic organic compounds. Therefore the success of the dredging process depends on the prevention of resuspension of fine particles. Advanced dredging processes employ pumping the sediment with water onto a ship and release the turbid water pumped with sediment into waterbody after collection of sediment solids. Before release of the turbid water into lake or river, just a few minutes allowed to precipitate the suspended particle due to the limited area on a dredging ship. However the fine particle cannot be removed by the gravitational settling over a few minutes. Environmental technology such as coagulation and precipitation could be applied for the settling of fine particles. However, the process needs coagulants and big settling tanks. For the quick settling of the fine particles suspended during dredging process magnetic separation has been tested in current study. Magnetic force increased the settling velocity and the increased settling process can reduce the volume of settling tank usually located in a ship for dredging. The magnetic assisted settling also decreased the heavy metal release through the turbid water by precipitating highly contaminated particles with magnetic force.

Simulation on the PCB Particle Trajectories in Corona-discharge Electrostatic Separator (코로나 방전 정전선별기 내 PCB 입자의 이동궤도 시뮬레이션)

  • Han, Seongsoo;Park, Seungsoo;Kim, Seongmin;Park, Jaikoo
    • Resources Recycling
    • /
    • v.23 no.6
    • /
    • pp.30-39
    • /
    • 2014
  • The trajectories of PCB(Printed Circuit Board) particles in the corona discharge electrostatic separation was simulated. The PCB particles are prepared by crushing bare board, which disassembled from electronic components, consist mostly of copper and FR-4(Flame Retardant Level-4) Firstly, a model was established for calculating of detachment points of PCB particles from the rotating electrode in separator. The model of detachment points was derived from equilibrium of force such as gravity force, centrifugal force, electrostatic force. The trajectories of particles after detachment was calculated by acceleration derived from time-integrating method of motion equation. In this simulation, particle size, supplied voltage, rotation speed of rotating roll electrode and angle of induction electrode were adopted as variables. While the trajectories of FR-4 particles were affected by all variables, rotation speed of rotating roll electrode was dominant variables affecting trajectories of copper particles.

A Study on Crystallization of Linear Low Density Polyethylene Particles from Decalin Solution (Decalin 용액에서 선형 저밀도 폴리에틸렌 입자의 결정화에 관한 연구)

  • Park, Keun-Ho;Jang, Young-Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.370-376
    • /
    • 2012
  • We fabricated linear low density polyethylene (LLDPE) particles via crystallization from decalin solution. In the thermally induced phase separation (TIPS) process, formation of particles occurred during controlled cooling of LLDPE/decalin solution. Despite an increase of nucleation and growth rate for crystals at higher polymer concentrations, which generally results in larger particles than at lower concentration, the average diameter of LLDPE particles increased as LLDPE was more concentrated in decalin solution. In the FE-SEM micrographs, the observed particles from various concentrations were smaller than 10 ${\mu}m$, showing spherical morphologies. In addition to its effect on size, concentration of LLDPE had an broadening effect on the particle size distribution.

Reaction Characteristics of Five Kinds of Oxygen Carrier Particles for Chemical-Looping Combustor (매체순환식 가스연소기 적용을 위한 5가지 산소공여입자들의 반응특성)

  • Ryu, Ho-Jung;Kim, Gyoung-Tae;Lim, Nam-Yun;Bae, Seong-Youl
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.1
    • /
    • pp.24-34
    • /
    • 2003
  • For gaseous fuel combustion with inherent $CO_2$ capture and low NOx emission, chemical-looping combustion may yield great advantages for the savings of energy to $CO_2$ separation and suppressing the effect on environment, In chemical-looping combustor, fuel is oxidized by metal oxide medium in a reduction reactor. Reduced particles are transported to oxidation reactor and oxidized by air and recycled to reduction reactor. The fuel and the air are never mixed, and the gases from reduction reactor, $CO_2$ and $H_2O$, leave the system as separate stream. The $H_2O$ can be easily separated by condensation and pure $CO_2$ is obtained without any loss of energy for separation. In this study, five oxygen carrier particles such as NiO/bentonite, NiO/YSZ, $(NiO+Fe_2O_3)VYSZ$, $NiO/NiAl_2O_4$, and $Co_{\chi}O_y/CoAl_2O_4$ were examined &om the viewpoints of reaction kinetics, oxygen transfer capacity, and carbon deposition characteristics. Among five oxygen particles, NiO/YSZ particle is superior in reaction rate, oxygen carrier capacity, and carbon deposition to other particles. However, at high temperature ($>900^{\circ}C$), NiO/bentonite particle also shows enough reactivity and oxygen carrier capacity to be applied in a practical system.

Characterization of Asian dust using steric mode of sedimentation field-flow fractionation (Sd/StFFF) (Steric 모드의 침강장-흐름 분획법을 이용한 황사의 특성분석)

  • Eum, Chul Hun;Kim, Bon Kyung;Kang, Dong Young;Lee, Seungho
    • Analytical Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.476-482
    • /
    • 2012
  • Asian dust particles are known to have sizes ranging from a few nanometers up to about a few micrometers. The environmental and health effects depend on the size of the dust particles. The smaller, the farther they are transported, and the deeper they penetrate into the human respiratory system. Sedimentation field-flow fractionation (SdFFF) provides separation of nano to microparticles using a combination of centrifugal force and parabolic laminar flow in a channel. In this study, the steric mode of SdFFF (Sd/StFFF) was tested for size-based separation and characterization of Asian dust particles. Various SdFFF experimental parameters including flow rate, stop-flow time and field strength of the centrifugal field were optimized for the size analysis of Asian dust. The Sd/StFFF calibration curve showed a good linearity with $R^2$ value of 0.9983, and results showed an excellent capability of Sd/StFFF for a size-based separation of micron-sized particles.The optical microscopy (OM) was also used to study the size and the shape of the dust particles. The size distributions of the samples collected during a thick dust period were shifted towards larger sizes than those of the samples collected during thin dust periods. It was also observed that size distribution of the sample collected during dry period shifts further towards larger sizes than that of the samples collected during raining period, suggesting the sizes of the dust particle decrease during raining periods as the components adsorbed on the surface of the dust particles were removed by the rain water. Results show Sd/StFFFis a useful tool for size characterization of environmental particles such as the Asian dust.

Analysis of a Continuous and Instantaneous Vacuum Drying System for Drying and Separation of Suspended Paricles in Waste Solvent (폐용제에 함유된 입자의 건조 및 분리용 연속식 순간 진공건조시스템 해석)

  • 구재현;이재근
    • Resources Recycling
    • /
    • v.9 no.4
    • /
    • pp.28-36
    • /
    • 2000
  • This study describes to analyze the characteristics for separation and recovery of both the dried particles and the purified solvent from the waste solvent through the vaporization process by the continuous and instantaneous vacuum drying system. The vacuum drying system for the waste solvents recovery consists of a feeding pump, a double pipe heat exchanger, a vacuum spray chamber, and a condenser. The vacuum drying system heats the waste solvent to the vapor in the double pipe heat exchanger and the expanded vapor is sprayed at the end of the tube. The vaporized solvent in the condenser are recovered. The particles in the waste solvent are separated and dried from the vapor in the vacuum spray chamber. Performance evaluation of the vacuum drying system was conducted using the mixture of the dried pigment particles and benzene or alkylbenzene as test samples. For the mixture of 10 wt% pigment particles an 90% benzene, the recovery efficiency of benzene was 88% with the purity of 99% and the recovery efficiency of dried particles was 94% with the moisture of 1.1 wt%. The size of pigment particles was decreased from $6.5\mu\textrm{m}$ to $5.6\mu\textrm{m}$ in diameter due to high speed spraying and dispersion in the vacuum drying system during drying process. Therefore, the vacuum drying system showed to be an effective method for separating particles and solvent in the waste solvent.

  • PDF