• Title/Summary/Keyword: Separation of Ni

Search Result 210, Processing Time 0.025 seconds

Effect of magnetic separation in removal of Cr and Ni from municipal solid waste incineration (MSWI) bottom ash (생활폐기물(生活廢棄物) 소각(燒却) 바닥재의 자력선별(磁力選別)에 따른 크롬과 니켈의 거동(擧動))

  • Ahn, Ji-Whan;Um, Nam-Il;Cho, Kye-Hong;Oh, Myung-Hwan;You, Kwang-Suk;Han, Gi-Chun;Cho, Hee-Chan;Han, Choon;Kim, Byong-Gon
    • Resources Recycling
    • /
    • v.16 no.6
    • /
    • pp.3-9
    • /
    • 2007
  • Although the ferrous material was separated by the magnetic separation before the incineration process, the municipal solid waste incineration bottom ash generated during incinerator in metropolitan area consists of many iron products which account for about $3{\sim}11%$ as well as ceramics and glasses. The formation of $NiFe_2O_4$ and $FeCr_2O_4$ with a $Fe_3O_4-Fe_2O_3$ (similar to pure Fe) on the surface of iron product was found during air-annealing in the incinerator at $1000^{\circ}C$, because Ni and Cr has a chemical attraction about iron is using to coat with Ni and Cr metals for poish or to prevent corrosion. Therefore, Fe-Ni Cr oxide can be formed on durface of the iron product and it can be separated from bottom ash through the magnetic separation. So, in this study, the separation ratio of heavy metals as magnetic separation and mineralogical formation of Fe-ion(heavy metal) in ferrous metals corroded were investigated. As the result, the separation ratio of Ni and Cr based on particle sizes accounted for about $45{\sim}50%$, and Cu and Pb accounted for below 20%. Also, the leaching concentration of Ni and Cr in bottom ash separated by magnetic separation was lower than that in fresh bottom ash.

Analysis of Phase Separation by Thermal Aging in Duplex Stainless Steels by Magnetic Methods

  • Kim, Sunki;Wonmok Jae;Kim, Yongsoo
    • Nuclear Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.361-367
    • /
    • 1997
  • The phase separation in ferrite phase of duplex stainless steel is the primary cause of thermal aging embrittlement of the LWR primary pressure boundary components. In this study the phase separation of simulated duplex stainless steel was detected by Mossbauer spectroscopy and magnetic property analysis by VSM(Vibrating Specimen Magnetometer). The simulated duplex stainless steels, Fe-Cr binary, Fe-Cr-Ni ternary, and Fe-Cr-Ni-Si quarternary allots, were aged at 370 and 40$0^{\circ}C$ up to 5,340 hours. It was observed from Mossbauer spectra analysis that internal magnetic field increases with aging time and from VSM that the specific saturation magnetization and Curie temperature increase with aging time. These result are indicative that phase separation into Fe-rich region and Cr-rich region is caused by thermal aging in the temperature range of 370~40$0^{\circ}C$ In cases of specimens containing Ni, the increase of specific saturation magnetization is much higher. This implies that Ni seems to promote Fe-Cr interdiffusion, which accelerates the phase separation into Fe-rich $\alpha$ phase and Cr-rich $\alpha$' phase.

  • PDF

Preparation of Nano-sized MgxNiyZn1-x-yFe2O4 by Ultrasonic Wet-Magnetic Separation Method (초음파 습식 자기분류법을 이용한 MgxNiyZn1-x-yFe2O4 나노입자 제조)

  • Gu, Moon Sun;Kwon, Hyuk Joo;Choi, Yong
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.3
    • /
    • pp.212-218
    • /
    • 2017
  • $Mg_xNi_yZn_{1-x-y}Fe_2O_4$ ferrite powders were prepared by self-propagating high temperature synthesis followed by classifying with an ultrasonic wet-magnetic separation unit to get high pure nano-sized particles. The $Mg_xNi_yZn_{1-x-y}Fe_2O_4$ ferrites were well formed by using several powders like iron, nickel oxide, zinc oxide and magnesium oxide at 0.1 MPa of oxygen pressure. The ultrasonic wet-magnetic separation of pre-mechanical milled ferrite powders resulted in producing the powders with average size of 800 nm. The addition of a surfactant during the wet-magnetic separation process improved productivity more than twice. The coercive force, maximum magnetization and residual magnetization of the $Mg_xNi_yZn_{1-x-y}Fe_2O_4$ nano-powders with 800 nm size were 3651 A/m, $53.92Am^2/kg$ and $4.0Am^2/kg$, respectively.

Separation for the Determination of $^{59/63}Ni$ in Radioactive Wastes (방사성 폐기물 내 $^{59/63}Ni$ 정량을 위한 분리)

  • Lee, Chang-Heon;Jung, Kie-Chul;Choi, Kwang-Soon;Jee, Kwang-Young;Kim, Won-Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.4
    • /
    • pp.309-317
    • /
    • 2005
  • A study on the separation of $^{99}Tc,\;^{94}Nb,\;^{55}Fe,\;^{90}Sr\;and\;^{59/63}Ni$ in various radioactive wastes discharged from nuclear power plants has been performed for a use in their quantification which is indispensible for the evaluation of the radionuclide inventory Ni was recovered along with Ca, Mg, Al, Cr, Ti, Mn, Ce, Na, K, and Cu through the sequential separation procedure of Re(as a surrogate of $^{99}Tc$), Nb, Fe and Sr by anion exchange and Sr-Spec extraction chromatography. In this research, chemical separation of Ni from the co-existing elements was investigated by cation exchange and Ni-Spec extraction chromatography. Precipitation behaviour of Ni and the co-existing elements with dimethylglyoxime(DMG) was investigated in ammonium $citrate/ethanol-H_2O$ and tartaric $acid/acetone-H_2O$ in order to purify separated Ni fractions and to prepare $^{59/63}Ni$ source for the radioactivity measurement using a gas proportional counter. Recovery of Ni separated through ion exchange chromatographic separation procedure was $92.1\%$ with relative standard deviation of $0.9\%$. In addition, recovery of Ni with DMG in the tartaric $acid/acetone-H_2O$ was $85.6\%$ with relative standard deviation of $1.9\%$.

  • PDF

Selective Separation of Hydrogen from Gas Mixture using LaNi5 (LaNi5를 이용한 혼합기체로부터 수소의 선택적 분리)

  • Sun, Yang Kook;Nahm, Kee Suk;Lee, Wha Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.1 no.1
    • /
    • pp.15-23
    • /
    • 1989
  • The selective separation of hydrogen from gas mixture containing hydrogen was experimentally studied using $LaNi_5$. The capacity and the rate of hydrogen separation, the purity of recovered hydrogen and the optimum condition of the regeneration of deactivated $LaNi_5$ were investigated. The separation rate and the recovery ratio of hydrogen were slowly decreased with the increase of the number of hydrogen absorption cycle. It was found that this result comes from the deactivation of $LaNi_5$ partly because of the blocking of hydrocarbon compounds in the $LaNi_5$ lattice and partly because of the poisoning of $LaNi_5$ surface by carbon monoxide contained in the gas mixture. The optimum condition for the regeneration of deactivated $LaNi_5$ was obtained by heating in a vacuum to about 637 K. The recovery ratio of hydrogen at the optimum condition was observed to be about 80%. The rates of hydrogen separation were measured in the ${\alpha}$-phase and two phase regions. The rate equations could be expressed as follows ; ${\alpha}$ - phase : $$-\frac{dP{_{H_2}}}{dt}=9.836{\times}10^{-3}(P{_{H_2}}_{-P_{eq}})$$ two phase region : $$-\frac{dP_{H{_2}}}{dt}=1.6909{\times}10^2\exp(-17560/RT)(P{_{H_2}}_{-P_{eq}})$$.

  • PDF

LIFETIME AND FRACTURE PATTERNS OF NITI ROTARY FILES IN MOLARS (대구치에서 회전식 NiTi file의 수명과 파절양상)

  • Kim, Jin-Woo;Ahn, Byung-Doo;Park, Se-Hee;Shin, Hye-Jin;Cho, Kyung-Mo
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.3
    • /
    • pp.184-192
    • /
    • 2005
  • Intracanal separation of the rotary files is a serious concern in modern endodontic practice. The objective of this study was to compare the life span and fracture patterns of three NiTi rotary files in molar teeth Mesiobuccal roots of upper molar (n = 150) and mesial roots of lower molar (n = 150) were divided into three groups and each group was prepared with Profile, ProTaper, and K3 respectively. Every file was used until separation and/or deterioration of the cutting blade was happened, and then the number of canals to separation and/or unwinding were recorded. Radiographs and Scanning electon microscope (SEM) photographs were taken to evaluate the patterns of separation. The results were as follows: 1. There were no significant differences in numbers of canals to separation and/or unwinding among the groups. 2. Comparing between flaring files, K3 showed significant lower numbers of canals to separation and/or unwinding (p < 0.05), and there was no significant difference between shaping files 3. Separations of instruments were occurred at the midpoint of curvatures within the canals 4. In SEM observations, ductile fractures were seen in most of cases, characterized by shallow dimples. Additional researches is needed to provide a new guideline that informs the appropriate number of times to use NiTi files.

Application of Ultrasonic Wet-Magnetic Separation Method to Prepare Nano-sized MgxNiyZn1-x-yFe2O4 (MgxNiyZn1-x-yFe2O4나노입자 제조를 위한 초음파 습식 자기분류법의 적용)

  • Gu, Mun-Seon;Choe, Yong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.201.2-201.2
    • /
    • 2016
  • $Mg_xNi_yZn_{1-x-y}Fe_2O_4$ ferrite powders were prepared by self-propagating high temperature synthesis followed by classified by ultrasonic wet-magnetic separation method to get nano-sized particles with high purity. The $Mg_xNi_yZn_{1-x-y}Fe_2O_4$ ferrites were well formed by using several powders like iron, nickel oxide, zinc oxide and magnesium oxide at 0.1 MPa of oxygen pressure. The ultrasonic wet-magnetic separation of pre-mechanical milled ferrite powders produced the powders with average size of $3.7-0.8{\mu}m$. The addition of a surfactant during the separation process improved productivity more than twice. The coercive force, maximum magnetization and residual magnetization of the $Mg_xNi_yZn_{1-x-y}Fe_2O_4$ nano-powders with 810 nm size were 45.89 Oe, 53.92 emu/gOe, 0.4 emu/Oe, respectively.

  • PDF

Adsorptive removal of Ni(II) ions from aqueous solution by PVDF/Gemini-ATP hybrid membrane

  • Zhang, Guifang;Qin, Yingxi;Lv, Chao;Liu, Xingtian;Zhao, Yiping;Chen, Li
    • Membrane and Water Treatment
    • /
    • v.7 no.3
    • /
    • pp.209-221
    • /
    • 2016
  • As a highly hydrophilic fibrillar mineral in nature, attapulgite (ATP) is a promising new additive for preparation of ultrafiltration (UF) hybrid membrane. In this work, ATP particles, which were grafted with a new Gemini surfactant of Ethyl Stearate-di(octadecyl dimethyl ammonium chloride) to detach the crystal bundles to single crystal and enhance the uniform dispersion in an organic polymer matrix, were incorporated into poly(vinylidene fluoride) (PVDF) matrix, and PVDF/Gemini-ATP hybrid membranes for adsorptive removal of Ni(II) ions from aqueous solution were prepared via a phase inversion method. Chemical composition, crystalization and morphology of the modified ATP were characterized by Fourier transform infrared spectroscopy (FTIR), Transmission electron microscope (TEM) and X-ray diffraction (XRD), respectively. The morphology of the hybrid membrane was characterized by Scanning electron microscopy (SEM), the performance of permeability, hydrophilicity and adsorption of Ni(II) ions were studied, and the adsorption kinetics of the PVDF/ATP hybrid membranes were particular concerned. The results showed that the hybrid membrane displayed a good thermal stability and hydrophilicity. Comparing with PVDF membrane, the hybrid membrane possessed good adsorption capacity for Ni(II) ions, and the adsorption kinetics fit well with Lagergren second-order equation.

Characteristics of the Electrochemical Ion Exchanger for the Treatment of Cations in Nuclear Wastewater (원자력 폐수의 양이온 처리를 위한 전기화학적 이온교환체의 특성)

  • Hwang, Young-Gi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.4
    • /
    • pp.176-184
    • /
    • 2016
  • Electrochemical ion exchange method is expected to be one of the most acceptable techniques for the separation of radioactive cations from nuclear wastewater. In this study a thin film of hexacyanoferrate on nickel surface was derivatized chemically in an aqueous potassium-ferricyanide solution. Electrochemical redox behavior of the nickel hexacyanoferrate(NiHCNFe) film electrode was investigated with the use of cyclic voltammetry potentiostated from -100 to 800 mV versus SCE. The electro-reduction characteristics of the NiHCNFe film were examined in the cobalt solutions. The NiHCNFe ion exchanger was more useful at lower concentration, lower temperature, and pH7 of the cobalt solution. The capacity loss of NiHCNFe was 0.018%/cycle that was less than the average loss of 2~3%/cycle of the convective organic exchanger. The 45~55% of the initial cobalt ions was electro-deposited on the NiHCNFe by using continuous recirculating reactor system. As a result, it was found that the electroactive NiHCNFe films showed better performance than the organic resins for the separation of cobalt ion from the aqueous solutions.

$Ba[Ce_{0.9}Y_{0.1}]O_{3-\delta}$ - Ni Composite Membrane for Hydrogen Separation by Aerosol Deposition Method (에어로졸 증착법[aerosol depostion method]에 의한 $Ba[Ce_{0.9}Y_{0.1}]O_{3-\delta}$ - Ni 수소분리막 제조)

  • Park, Young-Soo;Byeon, Myeong-Seob;Choi, Jin-Sub;Kim, Jin-Ho;Hwang, Kwang-Taek
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.2
    • /
    • pp.117-122
    • /
    • 2010
  • BCY($Ba(Ce_{0.9}Y_{0.1})O_{3-\delta}$) oxide, shows high protonic conductivity at high temperatures, and are referred to as hydrogen separation membrane. For high efficiency of hydrogen separation ($H_2$ flux and selectivity) and low fabrication cost, ultimate thin and dense BCY-Ni layer have to be coated on a porous substrate such as $ZrO_2$. Aerosol depostion (AD) process is a novel technique to grow ceramic film with high density and nano-crystal structure at room-temperature, and would be applied to the fabrication process of AD integration ceramic layer effectively. XRD and SEM measurements were conducted in order to analyze the characteristics of BCY-Ni membrane fabricated by AD process.