• 제목/요약/키워드: Separation of Fe and P

검색결과 76건 처리시간 0.324초

Synthesis, Characterization and Functionalization of the Coated Iron Oxide Nanostructures

  • Tursunkulov, Oybek;Allabergenov, Bunyod;Abidov, Amir;Jeong, Soon-Wook;Kim, Sungjin
    • Journal of Powder Materials
    • /
    • 제20권3호
    • /
    • pp.180-185
    • /
    • 2013
  • The iron oxides nanoparticles and iron oxide with other compounds are of importance in fields including biomedicine, clinical and bio-sensing applications, corrosion resistance, and magnetic properties of materials, catalyst, and geochemical processes etc. In this work we describe the preparation and investigation of the properties of coated magnetic nanoparticles consisting of the iron oxide core and organic modification of the residue. These fine iron oxide nanoparticles were prepared in air environment by the co-precipitation method using of $Fe^{2+}$: $Fe^{3+}$ where chemical precipitation was achieved by adding ammonia aqueous solution with vigorous stirring. During the synthesis of nanoparticles with a narrow size distribution, the techniques of separation and powdering of nanoparticles into rather monodisperse fractions are observed. This is done using controlled precipitation of particles from surfactant stabilized solutions in the form organic components. It is desirable to maintain the particle size within pH range, temperature, solution ratio wherein the particle growth is held at a minimum. The iron oxide nanoparticles can be well dispersed in an aqueous solution were prepared by the mentioned co-precipitation method. Besides the iron oxide nanowires were prepared by using similar method. These iron oxide nanoparticles and nanowires have controlled average size and the obtained products were investigated by X-ray diffraction, FESEM and other methods.

Separation of cadmium and chromium heavy metals from industrial wastewater by using Ni-Zn nanoferrites

  • Thakur, Atul;Punia, Pinki;Dhar, Rakesh;Aggarwal, R.K.;Thakur, Preeti
    • Advances in nano research
    • /
    • 제12권5호
    • /
    • pp.457-465
    • /
    • 2022
  • The potentials of NixZn1-xFe2O4 (x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) nanoadsorbents were investigated for removal of Cd and Cr from contaminated water from an electroplating industry in Himachal Pradesh, India. Optimal values were recorded under batch adsorption experiments performed to remove dissolved heavy metal ions from industrial wastewater. The specific surface area (SSA) of nanoadsorbents perceived to vary in a range 35.75-45.29 cm2/g and was calculated from the XRD data. The influence of two operating parameters, contact time and dopant (Ni) concentration was also investigated at pH ~7 with optimum dosage. Kinetic studies were conducted within a time range of 2-10 min with rapid adsorption of cadmium and chromium ions onto Ni0.2Zn0.8Fe2O4 nanoadsorbents. Pseudo-second-order kinetic model was observed to be well fitted with the adsorption data that confirmed the only existence of chemisorption throughout the adsorption process. The maximum adsorption efficiency values observed for Cd and Cr were 51.4 mg/g and 40.12 mg/g, respectively for different compositions of prepared series of nanoadsorbents. The removal percentage of Cd and Cr was found to vary in a range of 47.7%-95.25% and 21%-50% respectively. The prepared series of nanoferrite found to be suitable enough for adsorption of both heavy metal ions.

Separation and Recovery of Ce, Nd and V from Spent FCC Catalyst (FCC 폐촉매로부터 Ce, Nd 및 V의 분리 회수 프로세스)

  • Jeon, Sung Kyun;Yang, Jong Gyu;Kim, Jong Hwa;Lee, Sung Sik
    • Applied Chemistry for Engineering
    • /
    • 제8권4호
    • /
    • pp.679-684
    • /
    • 1997
  • The major constituents in spent FCC catalysts are Si, Al, Fe, Ti, alkali metals and some others. The spent catalyst is also composed small amounts of rare metals such as Ce, Nd, Ni and V. The selective adsorption and concentration of Ce and Nd from the leaching solution of spent FCC catalysts with sulfuric acid($0.25mol/dm^3$) were carried out by the column method with a chelate resin having a functional group of aminophosphoric acid type. Ce and Nd were separated from eluate liquor containing Al, Nd and V by the precipitation process with oxalic acid. Vanadium is purified from chloride ion coexistance by solvent extraction, employing tri-n-octyl phosphine oxide as extractant with Al in the raffinate solution. Rare metals with the purity of 99 percent were obtained from the spent FCC catalyst.

  • PDF

Immobilization of potassium copper hexacyanoferrate in doubly crosslinked magnetic polymer bead for highly effective Cs+ removal and facile recovery

  • Kim, Yun Kon;Bae, Kyeonghui;Kim, Yonghwan;Harbottle, David;Lee, Jae W.
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제68권
    • /
    • pp.48-56
    • /
    • 2018
  • A potassium copper hexacyanoferrate (KCuHCF) embedded magnetic hydrogel bead (HCF-Mbead) was synthesized via a facile double crosslinking methods of $Fe^{3+}$ ionic binding and freeze-thaw for effective $Cs^+$ removal. The HCF-Mbead had a hierarchical porous structure facilitating fast access of $Cs^+$ ions to embedded active sites. The adsorbent showed enhanced $Cs^+$ removal properties in terms of capacity (69.2 mg/g), selectivity ($K_d=4{\times}10^4mL/g$, 1 ppm $Cs^+$ in seawater) and stability (>99.5% removal in pH 3~11) with rapid magnetic separation. This study further opens the possibility to develop an efficient material that links the integration of adsorption and recovery.

Determination of copper(II) in various samples by flame atomic absorption spectrophotometry after column separation by adsorption of its N-benzoylphenylhydroxylamine complex on benzophenone

  • Park, Moon-Hee;Choi, Hee-Seon
    • Analytical Science and Technology
    • /
    • 제20권1호
    • /
    • pp.55-60
    • /
    • 2007
  • A sensitive technique for the determination of trace Cu(II) in various samples after the column preconcentration by adsorbing its N-benzoylphenylhydroxylamine (BPHA) onto benzophenone was developed. Several experimental conditions such as the pH of the sample solution, the amount of chelating agent, the amount of benzophenone, and the flowrate of sample solution and so forth were optimized. The interfering effects of diverse concomitant ions were investigated. Fe(III) and $CN^-$ interfered with more seriously than any other ions. However, the interference by these ions could be overcome sufficiently by adjusting the added volume of 0.01M BPHA to 10 mL. The dynamic range, the correlation coefficient ($r^2$) and the detection limit obtained by this proposed technique were 5.0~120 ng/mL, 0.9974, and 2.1 ng/mL, respectively. For validating this proposed technique, the aqueous samples (stream water, reservoir water, and wastewater), the plastic sample and the diluted brass sample were used. Recovery yields of 93~102% were obtained. These measured data were not different from ICP-MS data at 95% confidence level. This method was also validated by the rice flour CRM (normal, fortified) samples. Based on the results from the experiment, it was found that this proposed technique could be applied to the determination of Cu(II) in various real samples.

Removal of Unburned Carbon from Fly Ash using Countercurrent Column Flotation Cell (역류형 컬럼 부선기를 이용한 석탄회정제에 관한 연구)

  • 이전언;이제군
    • Resources Recycling
    • /
    • 제8권5호
    • /
    • pp.51-58
    • /
    • 1999
  • The sbdy iwestlgaled ihc propa-ties of Lhe dust\ulcorner rrom fe~~oallomya ~~ufacturTeh. e chemical composition, cornpasitlon material, p d c l e sire md shapes of the bulk dust, sired dust and magnetically separated durl were mvesligaled. As the re\ulcornerulL, we suppose that the dust from &gh Carbon Fenama~~gunesMc anuiact~vingP rocess is not sufiicient as solulce material of Mn because of ale low Mn canlenl (13.5%) and complicaled composition mate~ial. The dust from Bug F!lter or AOD Proccss is mi~inlym ade up of 0.2-2 pm Mn30, (Hausmam~iu)p iutlde in spherical shape and thc Mn content is 63.190.The dust from Cooler of AOD Process is inninly made up of coarse Ca(O1-Or)zM. n,FeyO,, SiO, and fine Mn30d.

  • PDF

Preparation and Characteristics of P(AN-co-MA) Membrane Imprinted with Lysozyme Molecules (라이소자임 분자각인 P(AN-co-MA) 막의 제조와 특성)

  • Min, Kyoung Won;Yoo, Anna;Youm, Kyung Ho
    • Membrane Journal
    • /
    • 제31권3호
    • /
    • pp.219-227
    • /
    • 2021
  • Molecularly imprinted membrane (MIM) is a porous polymer membrane incorporating with the molecular recognizing sites. In this study, the supporting P(AN-co-MA) asymmetric membrane was prepared by nonsolvent induced phase separation (NIPS) method. And then, MIM with lysozyme template sites was prepared using the surface imprinting method on the P(AN-co-MA) asymmetric membrane introducing a photoactive iniferter and then photo-grafting. The P(AN-co-MA) asymmetric membrane was modified with 3-chloropropyltrimethoxysilane and dithiocarbamate as a photoactive iniferter. To prepare a lysozyme imprinted membrane, the modified P(AN-co-MA) membrane was copolymerized with acrylamide as a functional momomer, N,N'-methylene bisacrylamide as a crosslinker and lysozyme as a template in the UV irradiation environment. The lysozyme imprinted MIM was analyzed by using SEM, FT-IR and EDS measurements. Its results confirm that all the P(AN-co-MA) membranes have an asymmetric structure and the iniferter group is successfully introduced on the membrane surface. The process parameters were adjusted to obtain MIM having the excellent lysozyme adsorption. The maximum lysozyme adsorption capacity reaches at 2.7 mg/g, which is 13 times higher than that of the non imprinted membrane (NIM). The permselective membrane filtration experiments of ovalbumin to lysozyme show that the P(AN-co-MA) MIM preferentially bounds a greater amount of lysozyme.

Flotation-Spectrophotometric Determination of Ag(I) at the 10-7 mol L-1 Level Using Iodide and Ferroin as an Ion-associate

  • Hosseini, Mohammad Saeid;Hashemi-Moghaddam, Hamid
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권10호
    • /
    • pp.1529-1532
    • /
    • 2005
  • A simple and cost effective method for separation and preconcentration of Ag(I) at the $10^{-7}\;mol\;L^{-1}$ level in the environmental and mineral samples is present. The method is based on the flotation of Ag(I)-iodide complex as an ion-associate with ferroin in pH of 4 from a large volume of an aqueous solution (500 mL) using nheptane. The floated layer was then dissolved in dimethylsulfoxide (DMSO) for the subsequent spectrophotometric determination. Beer's law was obeyed over a range of 2.0 ${\times}$ $10^{-7}$-4.0 ${\times}$ $10^{-6}$ mol $L^{-1}$ with the apparent molar absorptivity of 2.67 ${\times}$ $10^5$ L $mol^{-1}\;cm^{-1}$. The detection limit (n = 5) was 4 ${\times}$ $10^{-8}$ mol $L^{-1}$, and RSD (n = 5) obtained for 2.0 ${\times}$ $10^{-6}$ mol $L^{-1}$ of Ag(I) was 2.2%. The interference effects of a number of elements was studied and found that only $Hg^{2+}$ at low concentration, and $Pb^{2+}$, $Cd^{2+}$, $Cu^{2+}$, and $Fe^{3+}$ ions at moderately high concentrations were interfered. To overcome on these interference effects, the solution was treated with EDTA at a buffering pH of 4 and passed through a column containing Amberlite IR-120 ionexchanger resin, just before the flotation process. The proposed method was applied to determine of Ag(I) in a synthetic waste water, a photographic washing sample and a geological sample and the results was compared with those obtained from the flame atomic absorption spectrometry. The results were satisfactorily comparable with together, so that the applicability of the proposed method was confirmed in encountering with the real samples.

Remediation of Soils Contaminated with Arsenic and heavy Metals by Soil Washing (토양세척에 의한 비소 및 중금속 오염토양의 복원)

  • Ko Ilwon;Lee Cheol-Hyo;Lee Kwang-Pyo;Kim Kyoung-Woong
    • Journal of Soil and Groundwater Environment
    • /
    • 제9권4호
    • /
    • pp.52-61
    • /
    • 2004
  • In order to remediate soils contaminated with oxyanionic As and cationic Zn and Ni through the pilot-scale acid washing, the effectiveness of acid washing and the properties of contaminated soils, fine soil particle and dissolved contaminants were evaluated. $H_{2}SO_4\;and\;H_{3}PO_4$ washing at pH $2{\sim}3$ enhanced the removal of As by the presence of competitive oxyanions and HCl washing effectively removed simultaneously As, Zn and Ni. The effectiveness of soil washing was little enhanced above the critical reaction time, and the carbonate, Fe/Mn oxide and organic/sulfides associated fraction were dominantly removed. The washing of coarse soil particles was highly efficient, but that of fine soil particles($<74{\mu}m$) was recalcitrant due to the enrichment with contaminants. Moreover, the physical separation of fine particles($<149{\mu}m$) enhanced the overall efficiency of soil washing. Therefore, both chemical extraction and separation of fine soil particles showed the high effectiveness of soil washing in the intersection point to minimize the amount of fine soil particles and to maximize the chemical extraction of contaminants.

Studies on the Selective Separation and Preconcentration of Cr(VI) Ion by XAD-16-Chromotropic Acid Chelating Resin (XAD-16-Chromotropic Acid 킬레이트 수지에 의한 몇 가지 금속이온의 선택적 분리 및 농축에 관한 연구)

  • Lee, Won;Lee, Chang-Youl;Kim, Mi-Kyoung;Kim, In-Whan
    • Analytical Science and Technology
    • /
    • 제17권3호
    • /
    • pp.199-210
    • /
    • 2004
  • A new polystyrene-divinylbenzene chelating resin containing 4,5-dihydroxy-naphthalene-2,7-disulfonic acid (chromotropic acid : CTA) as functional group has been synthesized and characterized. The sorption and desorption properties of this chelating resin for Cr(III) ion and Cr(VI) ion including nine metal bloodstain. As a results, FOB test kit could be effectively applied to identification of human blood at chelating resin was stable in acidic and alkaline solution. The Cr(VI) ion is selectively separated from Cr (III) ion at pH 2 and the maximum sorption capacity of Cr(VI) ion is 1.2 mmol/g. In the presence of anions such as $F^-$, $SO{_4}^{2-}$, $CN^-$, $CH_3COO^-$, $NO{_3}^-$, the sorption of Cr(VI) ion was reduced but anions such as $PO{_4}^{3-}$ and $Cl^-$ revealed no interference effect. The elution order of metal ions obtained from breakthrough capacity and overall capacity at pH 2 was Cr(VI)>Sn(II)>Fe(III)>Cu(II)>Cd(II)${\simeq}Pb(II){\simeq}Cr(III){\simeq}Mn(II){\simeq}Ni(II){\simeq}Al(III)$. Desorption characteristics for Cr(VI) ion was investigated with desorption agents such as $HNO_3$, HCl, and $H_2SO_4$. It was found that the ion showed high desorption efficiency with 3 M HCl. As the result, the chelating resin, XAD-16-CTA was successfully applied to separation and preconcentration of Cr (VI) ion from several metal ions in metal finishing works.