• Title/Summary/Keyword: Separation Vortex

Search Result 255, Processing Time 0.021 seconds

Computational Fluid Analysis for the Otter Boards - 4 . Efficiency Analysis of the Cambered Otter Boards for the Vortex Generators - (전개판에 대한 수직해법 - 4 . 과발생기에 따른 만곡형전개판의 성능분석 -)

  • 고관서
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.4
    • /
    • pp.286-292
    • /
    • 1991
  • The authors propose to use the vortex generators in order to improve of the efficiency for the cambered otter boards. The equipments and testing method of this model test was the same as the previous report. This study was tested for 6 models such as the single cambered, the V-shaped cambered and the slotted cambered otter board without and with vortex generators. The results obtained are as follows: \circled1 C sub(L) of the single cambered model otter board with vortex generators was increased about 10% in comparison with that of model without vortex generators, C sub(D) decreased 2%, and L/D increased 5~20%. \circled2 L/D of the V-shaped cambered model otter board with vortex generators was increased 10~20% in comparison with that of model without vortex generators. \circled3 C sub(L) of the two slotted cambered model otter board with vortex generators was increased about 20% within an angle of attack 25$^{\circ}$ in comparison with that of without vortex generators, C sub(D) increased 5~20%, and L/D was higher than prototype within an angle of attack 20$^{\circ}$. \circled4 The separation point of the model otter boards with vortex generators was removed back ward a little in comparison with that of the model without vortex generators. \circled5 Flow speed difference of the back side to the front side of model otter boards with vortex generators was increased a little in comparison with that of the models without vortex generators. \circled6 The size of separation zone in case of the model otter boards with vortex generators was decreased about 10% in comparison with that of the models without vortex generators.

  • PDF

Experimental and Numerical Studies in a Vortex Tube

  • Sohn Chang-Hyun;Kim Chang-Soo;Jung Ui-Hyun;Lakshmana Gowda B.H.L
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.418-425
    • /
    • 2006
  • The present investigation deals with the study of the internal flow phenomena of the counterflow type vortex tube using experimental testing and numerical simulation. Visualization was carried out using the surface tracing method, injecting dye on the vortex tube wall using a needle. Vortex tube is made of acrylic to visualize the surface particle tracing and the input air pressure was varied from 0.1MPa to 0.3MPa. The experimentally visualized results on the tube show that there is an apparent sudden changing of the trajectory on the vortex tube wall which was observed in every experimental test case. This may indicate the stagnation position of the vortex flow. The visualized stagnation position moves towards the vortex generator with increase in cold flow ratio and input pressure. Three-dimensional computational study is also conducted to obtain more detailed flow information in the vortex tube. Calculated total pressure, static pressure and total temperature distributions in the vortex tube were in good agreement with the experimental data. The computational particle trace on the vortex tube wall is very similar to that observed in experiments.

Numerical Analysis of Ship's Propulsion Mechanism of Two-Stage Weis-Fogh Type by Discrete Vortex Method

  • No, Gi-Deok;Han, Su-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.11
    • /
    • pp.1548-1554
    • /
    • 2001
  • Flow patterns and dynamic properties of two-stage Weis-Fogh type ship propulsion mechanism are studied by a discrete vortex method. To study mutual interference between two wings, two cases are con sidered - wing motions with the same and reverse phases. The predicted flow patterns correspond to the available flow visualization results. Time histories of thrust and drag coefficients are also calculated, and the interference between the two wings are numerically clarified.

  • PDF

Unsteady Flow Characteristics of an Axial Flow Fan Installed in the Outdoor Unit of Air Conditioner (에어콘 실외기용 축류송풍기의 비정상 유동장 특성 연구)

  • Jang, Choon-Man
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.223-230
    • /
    • 2005
  • The unsteady nature of vortex structures has been investigated by a large eddy simulation (LES) in an axial flow fan with a shroud covering only the rear region of its rotor tip. The simulation shows that the tip vortex plays a major role in the structure and unsteady behavior of the vortical flow in the fan. The movements of the vortex structures induce high-pressure fluctuations on the rotor blade and in the blade passage. Frequency characteristics of the fluctuating pressure on the rotor blade are analyzed using wavelet transform. The dominant frequency of the real-time pressure selected at the high pressure fluctuation region corresponds well to that of the fluctuating rotor torque and the experimental result of fan noise. It is mainly generated due to the unsteady behavior of the vortical flow, such as the tip vortex and the leading edge separation vortex.

  • PDF

A model of roof-top surface pressures produced by conical vortices : Model development

  • Banks, D.;Meroney, R.N.
    • Wind and Structures
    • /
    • v.4 no.3
    • /
    • pp.227-246
    • /
    • 2001
  • The objective of this study is to understand the flow above the front edge of low-rise building roofs. The greatest suction on the building is known to occur at this location as a result of the formation of conical vortices in the separated flow zone. It is expected that the relationship between this suction and upstream flow conditions can be better understood through the analysis of the vortex flow mechanism. Experimental measurements were used, along with predictions from numerical simulations of delta wing vortex flows, to develop a model of the pressure field within and beneath the conical vortex. The model accounts for the change in vortex suction with wind angle, and includes a parameter indicating the strength of the vortex. The model can be applied to both mean and time dependent surface pressures, and is validated in a companion paper.

A Study of an Airfoil for Optimal Aerodynamic Performance of Flapping Motion (Flapping운동의 최적공력성능을 위한 익형 연구)

  • Lee J. S.;Kim C.;Rho O. H.
    • Journal of computational fluids engineering
    • /
    • v.8 no.2
    • /
    • pp.24-32
    • /
    • 2003
  • In this work, we propose a new idea of flapping airfoil design for optimal aerodynamic performance from detailed computational investigations of flow physics. Generally, flapping motion which is combined with pitching and plunging motion of airfoil, leads to complex flow features such as leading edge separation and vortex street. As it is well known, the mechanism of thrust generation of flapping airfoil is based on inverse Karman-vortex street. This vortex street induces jet-like flow field at the rear region of trailing edge and then generates thrust. The leading edge separation vortex can also play an important role with its aerodynamic performances. The flapping airfoil introduces an alternative propulsive way instead of the current inefficient propulsive system such as a propeller in the low Reynolds number flow. Thrust coefficient and propulsive efficiency are the two major parameters in the design of flapping airfoil as propulsive system. Through numerous computations, we found the specific physical flow phenomenon which governed the aerodynamic characteristics in flapping airfoil. Based on this physical insight, we could come up with a new kind of airfoil of tadpole-shaped and more enhanced aerodynamic performance.

Study on the Unsteady Wakes Past a Square Cylinder near a Wall

  • Kim Tae Yoon;Lee Bo Sung;Lee Dong Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1169-1181
    • /
    • 2005
  • Experimental and numerical studies on the unsteady wake field behind a square cylinder near a wall were conducted to find out how the vortex shedding mechanism is correlated with gap flow. The computations were performed by solving unsteady 2-D Incompressible Reynolds Averaged Navier-Stokes equations with a newly developed ${\epsilon}-SST$ turbulence model for more accurate prediction of large separated flows. Through spectral analysis and the smoke wire flow visualization, it was discovered that velocity profiles in a gap region have strong influences on the formation of vortex shedding behind a square cylinder near a wall. From these results, Strouhal number distributions could be found, where the transition region of the Strouhal number was at $G/D=0.5{\sim}0.7$ above the critical gap height. The primary and minor shedding frequencies measured in this region were affected by the interaction between the upper and the lower separated shear layer, and minor shedding frequency was due to the separation bubble on the wall. It was also observed that the position (y/G) and the magnitude of maximum average velocity $(u/u_{\infty})$ in the gap region affect the regular vortex shedding as the gap height increases.

Numerical Flow Visualization of 1st Cycle Motion of a Fling-clapping Wing (프링-크래핑 날개의 첫 번째 사이클 운동에 관한 수치적 흐름 가시화)

  • Sohn, Myong-Hwan;Chang, Jo-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.7
    • /
    • pp.1-12
    • /
    • 2004
  • A flow visualization of the 1st cycle motion of a fling-clapping wing that might be employed by butterflies during flight is performed. In this numerical flow visualization, he time-dependent Navier-Stokes equations are solved for two wing motion types; 'fling followed by clap and pause' and 'clap followed by fling and pause'. The result is observed regarding the main flow features such as the sequential development of the two families of separation vortex pairs and their movement. For the fling followed by clap and pause motion, a strong separation vortex pair of counter-clockwise develops in the opening between the wings in the fling phase and they then move out from the opening in the following clap phase. For the clap followed by fling and pause motion, the separation vortex pair developed in the outside space in the clap phase move into the opening in the following fling phase. The separation vortex pair in the opening developed in the fling phase of the clap followed by fling and pause motion is observed to be stronger than that in the opening developed in the fling phase of the fling followed by clap and pause motion.

The effect of upstream low-drag vortex generators on juncture flows

  • Younis, Md.Y.;Zhang, Hua;Hu, Bo;Uddin, Emad;Aslam, Jawad
    • Wind and Structures
    • /
    • v.28 no.6
    • /
    • pp.355-367
    • /
    • 2019
  • Control of horseshoe vortex in the circular cylinder-plate juncture using vortex generator (VG) was studied at $Re_D$(where D is the diameter of the cylinder) = $2.05{\times}10^5$. Impact of a number of parameters e.g., the shape of the VG's, number of VG pairs (n), spacing between the VG and the cylinder leading edge (L), lateral gap between the trailing edges of a VG pair (g), streamwise gap between two VG pairs ($S_{VG}$) and the spacing between the two VG's in parallel arrangement ($Z_{VG}$) etc. were investigated on the horseshoe vortex control. The study is conducted using surface oil flow visualization and surface pressure measurements in low speed wind tunnel. It is observed that all the parameters studied have significant control effect, either by reduction in separation region or by lowering the adverse pressure along the symmetric axis upstream of the juncture.

Computational Study on the Energy Separation of the Vortex Tube for CO2 Reduction (CO2 흡수용 20Nm3/hr급 Vortex tube의 에너지 분리 현상에 관한 해석적 연구)

  • Kim, Chang-Su;Jung, Young-Chul;Han, Keun-Hee;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.4
    • /
    • pp.695-701
    • /
    • 2009
  • Vortex tube is the device that can separate small particles from the compressed gas, as well as compressed gas into hot and cold flow. In this study, computational approach has been performed to analyze the characteristics of the vortex tube. Energy separation characteristics of the vortex tube has been tested for various geometric design parameters. For the given conditions, it is found that as the tube is lengthened, hot end temperature is reduced but cold end temperature does not influenced much. As the orifice diameter decreases, cold end temperature decreases. Also, as hot gas fraction increases, hot end temperature decreases. The results from this study can be used for the basic design parameter of the $CO_2$ reduction device.