• Title/Summary/Keyword: Separation Vortex

Search Result 255, Processing Time 0.024 seconds

An Experimental Study on Flow control around Foil with Coanda effect (콴다효과를 이용한 익 주위의 유동제어에 관한 실험적 연구)

  • Oh, Kyoung-Gun;Cho, Dae-Hwan;Lee, Gyoung-Woo;Ko, Jae-Yong
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.11a
    • /
    • pp.65-69
    • /
    • 2006
  • The flow around a foil with water jet was investigated using the two-frame PIV(CACTUS 3.1) system. After separation, unsteady recirculation & reattachment region was shown a result at reading edge. Separation area was decreased to 1/3 more by waterjet system with coanda effect. Angle of attack and water jet velocity was a variable in the experiment. Each parameters was controlled to $0^{\circ}\sim35^{\circ}$ and $0[m/s]\sim9.2[m/s]$. The separation of flow appearanced at first when the angle of attack is $17^{\circ}\sim18^{\circ}$, However, according to grew up of velocity, beginning of the separation was delayed. In this experiment, vortex and separation region was disappeared by blown when each parameters are low level, and separation controlled more certainly.

  • PDF

A Study of PIV Analysis around 2-Dimensional Foil with Blowing (물분사장치를 이용한 2차원 익 주위의 PIV 해석에 관한 연구)

  • Oh, Kyoung-Gun;Cho, Dae-Hwan;Lee, Gyoung-Woo;Ko, Jae-Yong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.45-49
    • /
    • 2006
  • The flow around a foil with waterjet was investigated using the two-frame PIV(CACTUS 3.1) system. After separation, unsteady recirculation & reattachment region was shown as a result at reading edge. Separation area was decreased to 1/3 more by waterjet system with coanda effect. Angle of attack and waterjet velocity was a variable in the experiment. Each parameters was controlled to $0^{\circ}{\sim}35^{\circ}$ and 0[m/s]${\sim}$9.2[m/s]. The separation of flow appearanced at first when the angle of attack is $17^{\circ}{\sim}18^{\circ}$. However, according to grew up of velocity, beginning of the separation was delayed. In this experiment, vortex and separation region was disappeared by blown when each parameters are low level, and separation controlled more certainly.

  • PDF

FLOW CONTROL ON ELLIPTIC AIRFOILS USING SYNTHETIC JET (합성제트를 이용한 타원형 익형 유동제어)

  • Kim, S.H.;Kim, C.W.
    • Journal of computational fluids engineering
    • /
    • v.15 no.4
    • /
    • pp.46-52
    • /
    • 2010
  • In the present work, the aerodynamic characteristics of elliptic airfoils which have a 12% thickness ratio are numerically investigated based on Reynolds-averaged Navier-Stokes equations and a transition SST model at a Reynolds number 8.0$\times$105. The numerical simulation of a synthetic jet actuator which is a well-known zero-net-mass active flow control actuator located at x/c = 0.00025, was performed to control massive flow separation around the leading edge of the elliptic airfoils. Four cases of non-dimensional frequencies were simulated at an angle of attack of 12 degree. It is found that the size of the vortex induced by synthetic jets was getting smaller as the jet frequency becomes higher. Comparison of the location of synthetic jets between x/c = 0.00025 (around the leading edge) and x/c = 0.9 (near the separation) shows that the control near the leading edge induces closed recirculation flow regions caused by the interaction of the synthetic jet with the external flow, but the control applied at 0.9c (near the trailing edge) induces a very small and weak vortex which quickly decays due to weak intensity.

A Study on the Transitional Shock Separation Patterns in an Over-Expanded Nozzle (과팽창 노즐에서 발생하는 충격파 박리 패턴의 천이에 관한 연구)

  • Lee, Jong-Sung;Lijo, Vincent;Kim, Heuy-Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.3
    • /
    • pp.9-15
    • /
    • 2010
  • Numerical investigation was carried out on axisymmetric over-expanded rocket nozzle to predict flow fields of transitional shock separation patterns. The unsteady, compressible N-S equations with k-$\omega$ SST for turbulence model closure were solved using a fully implicit finite volume scheme. Computed results were in good agreement with previous experimental works. It was found that strong side-loads were generated during the transition of RSS to FSS due to the development of a vortex ring in the inviscid jet core region. Hysteresis phenomenon exhibited by the shock-separation patterns was also found during the start-up and shut-down processes.

Flow Field Change before Onset of Flow Separation

  • Hasegawa, Hiroaki;Sugawara, Takeru
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.3
    • /
    • pp.215-222
    • /
    • 2009
  • Jets issuing through small holes in a wall into a freestream has proven effective in the control of flow separation. This technique is known as the vortex generator jet (VGJs) method. If a precursor signal of separation is found, the separation control system using VGJs can be operated just before the onset of separation and the flow field with no separation is always attained. In this study, we measured the flow field and the wall static pressure in a two-dimensional diffuser to find a precursor signal of flow separation. The streamwise velocity measurements were carried out in the separated shear layer and spectral analysis was applied to the velocity fluctuations at some angles with respect to the diffuser. The pattern of peaks in the spectral analysis changes as the divergence angle increases over the angle of which the whole separation occurs. This change in the spectral pattern is related to the enhancement of the growth of shear layer vortices and appears just before the onset of separation. Therefore, the growth of shear layer vortices can be regarded as a precursor signal to flow separation.

A Comparative Study of Numerical Methods on Aerodynamic Characteristics of a Compressor Rotor at Near-stall Condition

  • Kim, Donghyun;Kim, Kuisoon;Choi, Jeongyeol;Son, Changmin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.157-164
    • /
    • 2015
  • The present work performs three-dimensional flow calculations based on Reynolds Averaged Navier-Stokes (RANS) and Delayed Detached Eddy Simulation (DDES) to investigate the flow field of a transonic rotor (NASA Rotor 37) at near-stall condition. It is found that the DES approach is likely to predict well the complex flow characteristics such as secondary vortex or turbulent flow phenomenon than RANS approach, which is useful to describe the flow mechanism of a transonic compressor. Especially, the DES results show improvement of predicting the flow field in the wake region and the model captures reasonably well separated regions compared to the RANS model. Besides, it is discovered that the three-dimensional vortical flows after the vortex breakdown from the rotor tip region are widely distributed and its vortex structures are clearly present. Near the rotor leading edge, a part of the tip leakage flows in DES solution spill over into next passage of the blade owing to the separation vortex flow and the backflow is clearly seen around the trailing edge of rotor tip. Furthermore, the DES solution shows strong turbulent eddies especially in the rotor hub, rotor tip section and the downstream of rotor trailing edge compared to the RANS solution.

Application of Flow Control Devices for Smart Unmanned Aerial Vehicle (SUAV) (스마트무인기에 적용한 유동제어 장치)

  • Chung, Jin-Deog;Hong, Dan-Bi
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.197-206
    • /
    • 2009
  • To improve the aerodynamic efficiency of Smart Unmanned Aerial Vehicle (SUAV), vortex generators and flow fence are applied on the surface and the tip of wing. The initially applied vortex generator increased maximum lift coefficient and delayed the stall angle while it produced excessive increase in drag coefficient. It turns out reduction of the airplane's the lift/drag ratio. The new vortex generators with L-shape and two different height, 3mm and 5mm, were used to TR-S4 configuration to maintain the desired level of maximum lift coefficient and drag coefficient. Flow fence was also applied at the end of both wing tip to reduce the interaction between nacelle and wing when nacelle tilting angles are large enough and produce flow separation. To examine the effect of flow fence, flow visualization and force and moment measurements were done. The variation of the aerodynamic characteristics of SUAV after applying flow control devices are summarized.

  • PDF

The Characteristic Calculation of the Wake through Cylinders by Vortex Method (와법을 이용한 원주군을 지나는 후류의 특성 계산)

  • Ro, Ki-Deok;Oh, Se-Kyung;Byun, Yong-Sue
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.76-83
    • /
    • 2010
  • The Characteristics of the flow field through cylinders with in-line and staggered arrangements were calculated by vortex method. Vortex distributions and velocity profiles around the cylinders with in-line and staggered arrangements were simulated at the pitch ratio of Pt/D=1.25~2.0 and Reynolds number of Re=$4.0{\times}10^1{\sim}4.0{\times}10^4$. As the results the vortices of clockwise at the upper separation point cylinder and the vortices of anticlockwise at the lower separation point of each cylinder were generated at both in-line and staggered arrangements. The generation of the reverse flow in the rear region of the cylinders was caused by the pitch ratio and Reynolds number, the boundary region was at the pitch ratio of Pt/D=1.5 and Reynolds number of Re=$4.0{\times}10^2{\sim}4.0{\times}10^3$ in case of in-line arrangement and was at the pitch ratio of Pt/D=1.4 and Reynolds number of Re=$4.0{\times}10^1{\sim}4.0{\times}10^2$ in case of staggered arrangement.

Numerical Study on Flow Characteristics of Synthetic Jet with Rectangular and Circular Slot Exit (사각형 및 원형 출구 Synthetic Jet의 유동 특성에 대한 수치적 연구)

  • Kim, Min-Hee;Kim, Woo-Re;Kim, Chong-Am;Jung, Kyung-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.7
    • /
    • pp.585-595
    • /
    • 2011
  • The flow characteristics of synthetic jet depending on rectangular and circular jet exit configuration are investigated using numerical computation with cross flow. In rectangular slot, synthetic jet generates the strong vortex but supplies fewer momentum and effectiveness of flow control is reduced along flow direction. In circular slot, regular vortex is formed from slot center to end. It affects the wider region than rectangular slot. The distribution of wall shear stress is considered in order to indicate the effectiveness of flow control device for flow separation delay. Consequently, circular slot is a more suitable candidate for delaying flow separation. In order to derive the optimal shape of a circular slot exit, hole gap and diameter that affect the flow structure and flow control were analyzed. As a result, consider the hole diameter and gap of circular slot exit design, effectiveness of the flow control can be increased.

Study on Unsteady Flow Field around Rectangular Cylinders using Proper Orthogonal Decomposition (POD) (POD를 이용한 구조기본단면 주변 비정상흐름장 특성에 관한 연구)

  • Lee, Jae-Hyung;Matsumato, Masaru
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.751-759
    • /
    • 2008
  • In this study, the effect of an unsteady flow field around a body of aerostatic/aerodynamic forces were investigated using rectangular cylinders (B/D = 2, 3, 4, 5). Proper orthogonal decomposition (POD) was introduced to the analysis of the fluctuating pressure field that was measured on the stationary/oscillatory B/D=4 rectangular cylinder, and the characteristics of the proper functions with flow patterns were identified. In addition, the physical decoupling and interactions in the different co-existing flow patterns were investigated through POD. The comparison with the identified proper function associated with a particular flow pattern revealed that the Karman vortex is almost not affected by the separation bubble, but that the Karman vortex considerably interferes in the development of the separation bubble around the trailing edge. It can be considered that the Karman vortex induces the increment of the curvature of the substantial separated flow.