• Title/Summary/Keyword: Separation Motion

Search Result 199, Processing Time 0.023 seconds

Center-of-Gravity Effect on Supersonic Separation from the Mother Plane (무게중심 변화에 따른 초음속 공중발사 로켓의 모선분리 연구)

  • Ji Young-Moo;Lee Jae-Woo;Byun Yung-Hwan;Park Jun-Sang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.36-40
    • /
    • 2006
  • An analysis is made of flow and rocket motion during a supersonic separation stage of air-launching rocket(ALR) from the mother plane. Three-dimensional compressible Navier-Stokes equations is numerically solved to analyze the steady/unsteady flow field around the rocket which is being separated from the mother plane configuration(F-4E Phantom). The simulation results clearly demonstrate the effect of shock-expansion wave interaction between the rocket and the mother plane. To predict the behavior of the ALR according to the change of the C.G., three cases of numerical analysis are performed. As a result, a design-guideline of supersonic air-launching rocket for the safe separation is proposed.

  • PDF

Analysis of Characteristics for a Dividing Flow in Open Channels (개수로 분류흐름에서의 특성분석)

  • Park, Seong-Soo;Lee, Jin-Woo;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.2
    • /
    • pp.53-57
    • /
    • 2009
  • The dividing flow in an open channel has a number of distinctive characteristics. One of these is that the separation zone interacts with a secondary motion along the inner wall of a branch channel, generating sediment accumulation. To investigate this phenomenon, a two-dimensional numerical model based on the shallow-water equations, RMA2, which calculates water surface elevations and horizontal-velocity components, was used to analyze the dividing flow. The obtained numerical results fully coincide with the laboratory measurements reported by Hsu et al.(2002). For the analysis of the numerical results, a separation zone-discharge rate relationship was proposed. To reduce the size of a separation zone, the topographies of diagonal and curved edges were proposed, smoothly connecting the upstream corner to branch channel.

Interactive sound experience interface based on virtual concert hall (가상 콘서트홀 기반의 인터랙티브 음향 체험 인터페이스)

  • Cho, Hye-Seung;Kim, Hyoung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.2
    • /
    • pp.130-135
    • /
    • 2017
  • In this paper, we propose an interface for interactive sound experience in the virtual concert hall. The proposed interface consists of two systems, called 'virtual acoustic position' and 'virtual active listening'. To provide these systems, we applied an artificial reverberation algorithm, multi-channel source separation and head-related transfer function. The proposed interface was implemented by using Unity. The interface provides the virtual concert hall to user through Oculus Rift, one of the virtual reality headsets. Moreover, we used Leap Motion as a control device to allow a user experience the system with free-hand. And user can experience the sound of the system through headphones.

Unsteady Force Characteristics on Foils Undergoing Pitching Motion (피칭 운동익에 작용하는 비정상 유체력)

  • Yang Chang-Jo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.117-125
    • /
    • 2006
  • In the present study the unsteady forces acting on the pitching foils such as a flat plate, NACA0010, NACA0020, NACA65-0910 and BTE have been measured by using a six-axis sensor in a circulating water tunnel at a low Reynolds number region. The unsteady characteristics of the dynamic drag and lift have been compared to the quasi-steady ones which are measured under the stationary condition. The pitching motion is available for keeping the lift higher after the separation occurs. Especially, the characteristics of the dynamic lift are quite different from the quasi-steady one at high pitching frequency regions. As the pitching frequency deceases, the amplitude of the dynamic lift becomes closer to the quasi-steady one. However, the phase remains different between the steady and unsteady conditions even at low pitching frequencies. On the other hand, the dynamic drag is governed strongly by the angle of attack.

Spatially variable ground motion simulation (공간적 변이성을 고려한 지진파 생성)

  • Park, Du-Hee;Hashash Youssef M.A.;Lee, Seung-Chan;Lee, Hyun-Woo;Chun Byung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.625-633
    • /
    • 2006
  • Spatial variability of ground motions has significant influence on dynamic response of longitudinal structures such as bridges and tunnels. The coherency function, which quantifies the degree of positive or negative correlation between two ground motions, is often used to describe the spatially variable ground motions. This paper compares two available procedures for developing spatially variable ground time histories from a given coherency function. Hao's method shows serious limitation, resulting in unrealistic decrease in coherency with increase in distance Abrahamason's method, on the other hand, preserves important characteristics of the reference ground motion. Therefore, the Abrahamason's method is recommended to be used in developing spatially varying ground motions.

  • PDF

A Numerical Study on the Flowfield of a Cyclone Separator for Oil Droplets (오일입자 원심분리기 유동장의 수치해석적 연구)

  • Kim, Sang-Dug
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.4
    • /
    • pp.36-41
    • /
    • 2015
  • The cyclone separator is a simple device, which causes the centrifugal separation of materials such as droplets or particles in a fluid stream. The cyclone separator utilizes the energy obtained from fluid pressure and linear motion to create rotational fluid motion. This rotational motion leads the materials suspended in the fluid to separate from the fluid quickly due to the centrifugal force. The rotation is produced by the tangential or involuted introduction of fluid into the vessel. These materials may be droplets of fuel in blow-by gas through an engine. Droplets suspended in the feed liquid may separate according to size, shape, or density. And the change of part dimension in a cyclone separator can yield the its performance variation. The current study shows the influence of design parameters on the performance of a cyclone separator for blow-by gas.

Aerodynamic Charasteristics of Tumbling-Rectangular-Flat Plate Under Free Flight

  • Shimizu, Kosuke;Funaki, Jiro;Hirata, Katsuya
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.353-356
    • /
    • 2004
  • When a body falls in fluid, the body often experiences autorotations, namely, various kind of rotating motions, such as tumbling, flat spin and coming. Tumbling is a rotating motion with an axis perpendicular to a falling direction. Tumbling is a very important phenomenon in aeronautical and space engineering, ballistics and meteorology. For example, when an satellite re-en-tries into the atomosphere, its body collapses into many fragments which are disperse in the wide range of field. Some fragments fall in tumbling motion. Then tumbling is useful to predict fragment's motion.(omitted)

  • PDF

The overall motion sickness incidence applied to catamarans

  • Piscopo, Vincenzo;Scamardella, Antonio
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.4
    • /
    • pp.655-669
    • /
    • 2015
  • The Overall Motion Sickness Incidence is applied to the hull form optimization of a wave piercing high-speed catamaran vessel. Parametric hull modelling is applied to generate two families of derived hull forms, the former varying the prismatic coefficient and the position of longitudinal centre of buoyancy, the latter instead the demi-hull separation. Several heading angles are analysed in a seaway, considering all combinations of significant wave height and zero-crossing period under two operating scenarios. The optimum hull is generated and vertical accelerations at some critical points on main deck are compared with the parent ones. Finally a comparative analysis with the results obtained for a similarly sized monohull passenger ship is carried out, in order to quantify, by the OMSI, the relative goodness in terms of wellness onboard of monohulls and catamarans, as a function of sea states and operating scenarios.

A Method for the Reduction of Skin Marker Artifacts During Walking : Application to the Knee

  • Mun, Joung-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.825-835
    • /
    • 2003
  • Previous studies have demonstrated the importance of joint angle errors mainly due to skin artifact and measurement errors during gait analysis. Joint angle errors lead to unreliable kinematics and kinetic analyses in the investigation of human motion. The purpose of this paper is to present the Joint Averaging Coordinate System (JACS) method for human gait analysis. The JACS method is based on the concept of statistical data reduction of anatomically referenced marker data. Since markers are not attached to rigid bodies, different marker combinations lead to slightly different predictions of joint angles. These different combinations can be averaged in order to provide a "best" estimate of joint angle. Results of a gait analysis are presented using clinically meaningful terminology to provide better communication with clinical personal. In order to verify the developed JACS method, a simple three-dimensional knee joint contact model was developed, employing an absolute coordinate system without using any kinematics constraint in which thigh and shank segments can be derived independently. In the experimental data recovery, the separation and penetration distance of the knee joint is supposed to be zero during one gait cycle if there are no errors in the experimental data. Using the JACS method, the separation and penetration error was reduced compared to well-developed existing methods such as ACRS and Spoor & Veldpaus method. The separation and penetration distance ranged up to 15 mm and 12 mm using the Spoor & Veldpaus and ACRS method, respectively, compared to 9 mm using JACS method. Statistical methods like the JACS can be applied in conjunction with existing techniques that reduce systematic errors in marker location, leading to an improved assessment of human gait.

Coupling effects of vortex-induced vibration for a square cylinder at various angles of attack

  • Zheng, Deqian;Ma, Wenyong;Zhang, Xiaobin;Chen, Wei;Wu, Junhao
    • Wind and Structures
    • /
    • v.34 no.5
    • /
    • pp.437-450
    • /
    • 2022
  • Vortex-induced vibration (VIV) is a significant concern when designing slender structures with square cross sections. VIV strongly depends on structural dynamics and flow states, which depend on the conditions of the approaching flow and shape of a structure. Therefore, the effects of the angle of attack on the coupling effects of VIV for a square cylinder are expected to be significant in practice. In this study, the aerodynamic forces for a fixed and elastically mounted square cylinder were measured using wind pressure tests. Aerodynamic forces on the stationary cylinder are firstly discussed by comparisons of variation of statistical aerodynamic force and wind pressure coefficient with wind angle of attack. The coupling effect between the aerodynamic forces and the motion of the oscillating square cylinder by VIV is subsequently investigated in detail at typical wind angels of attack with occurrence of three typical flow regimes, i.e., leading-edge separation, separation bubble (reattachment), and attached flow. The coupling effect are illustrated by discussing the onset of VIV, characteristics of aerodynamic forces during VIV, and interaction between motion and aerodynamic forces. The results demonstrate that flow states can be classified based on final separation points or the occurrence of reattachment. These states significantly influence coupling effects of the oscillating cylinder. Vibration enhances vortex shedding, which creates strong fluctuations in aerodynamic forces. However, differences in the lock-in range, aerodynamic force, and interaction process for angles of attack smaller and larger than the critical angle of attack revealed noteworthy characteristics in the VIV of a square cylinder.