• 제목/요약/키워드: Separation Force

검색결과 441건 처리시간 0.024초

The effects of foundation size on the seismic performance of buildings considering the soil-foundation-structure interaction

  • Nguyen, Quoc Van;Fatahi, Behzad;Hokmabadi, Aslan S.
    • Structural Engineering and Mechanics
    • /
    • 제58권6호
    • /
    • pp.1045-1075
    • /
    • 2016
  • Shallow footings are one of the most common types of foundations used to support mid-rise buildings in high risk seismic zones. Recent findings have revealed that the dynamic interaction between the soil, foundation, and the superstructure can influence the seismic response of the building during earthquakes. Accordingly, the properties of a foundation can alter the dynamic characteristics (natural frequency and damping) of the soil-foundation-structure system. In this paper the influence that shallow foundations have on the seismic response of a mid-rise moment resisting building is investigated. For this purpose, a fifteen storey moment resisting frame sitting on shallow footings with different sizes was simulated numerically using ABAQUS software. By adopting a direct calculation method, the numerical model can perform a fully nonlinear time history dynamic analysis to realistically simulate the dynamic behaviour of soil, foundation, and structure under seismic excitations. This three-dimensional numerical model accounts for the nonlinear behaviour of the soil medium and structural elements. Infinite boundary conditions were assigned to the numerical model to simulate free field boundaries, and appropriate contact elements capable of modelling sliding and separation between the foundation and soil elements are also considered. The influence of foundation size on the natural frequency of the system and structural response spectrum was also studied. The numerical results for cases of soil-foundation-structure systems with different sized foundations and fixed base conditions (excluding soil-foundation-structure interaction) in terms of lateral deformations, inter-storey drifts, rocking, and shear force distribution of the structure were then compared. Due to natural period lengthening, there was a significant reduction in the base shears when the size of the foundation was reduced. It was concluded that the size of a shallow foundation influences the dynamic characteristics and the seismic response of the building due to interaction between the soil, foundation, and structure, and therefore design engineer should carefully consider these parameters in order to ensure a safe and cost effective seismic design.

싱글쉘 터널 라이닝의 파괴 메카니즘 및 지보성능에 관한 연구 (A Study on failure mechanism and load-bearing capacity of single-shell tunnel lining)

  • 신휴성;김동규;장수호;배규진
    • 한국터널지하공간학회 논문집
    • /
    • 제8권3호
    • /
    • pp.273-287
    • /
    • 2006
  • 본 연구에서는 숏크리트 라이닝과 2차 콘크리트 라이닝 사이에 방수막으로 분리된 기존 이중구조의 터널 라이닝과 터널 라이닝 단면상에 전단력 전달을 저해하는 장치를 포함하지 않은 일체화 싱글쉘 구조의 터널 라이닝의 파괴양상 및 하중 지지성능에 관해 고찰한다. 하중지지력 평가를 위하여 우선적으로 수치해석적인 사전 평가가 실시되었으며, 새롭게 고안된 실대형 터널 라이닝 하중재하 실험이 실시되었다. 이때, 이완하중이나 암괴하중을 모사하기 위해 터널 천단부 집중하중이 고려되었다. 본 연구를 통하여, 동일한 터널라이닝 강도 관리기준에서 이중구조 라이닝보다 싱글쉘 라이닝 구조가 약 20%정도 높은 지지력을 보였으며, 다중 숏크리트 타설 단계마다 고성능 첨가재료 투입량의 조절로 복합재료 싱글쉘 라이닝 구조를 형성함으로써 보다 적은 고성능화 첨가재료 투입량으로 유사한 지지성능을 확보할 수 있는 가능성을 보였다.

알루미늄합금의 반용융 단조 및 주조공정에 관한 수치해석 (Numerical Analysis on Semi-Solid Forging and Casting Process of Aluminum Alloys)

  • 강충길;임미동
    • 소성∙가공
    • /
    • 제6권3호
    • /
    • pp.239-249
    • /
    • 1997
  • The behaviour of alloys in the semi-solid state strongly depends on the imposed stress state and on the morphology of the phase which can vary from dendritic to globular. To optimal net shape forging of semi-solid materials, it is important to investigate for filling phenomena in forging process of arbitrarily shaped dies. To produce a automotive part which has good mechanical property, the filling pattern according to die velocity and solid fraction distribution has to be estimated for arbitrarily shaped dies. Therefore, the estimation of filling characteristic in the forging simulation with arbitrarily shaped dies of semi-solid materials are calculated by finite element method with proposed algorithm. The proposed theoretical model and a various boundary conditions for arbitrarily shaped dies is investigated with the coupling calculation between the liquid phase flow and the solid phase deformation. The simulation process with arbitrarily shaped dies is performed to the isothermal conditions of two dimensional problems. To analysis of forging process by using semi-solid materials, a new stress-strain relationship is described, and forging analysis is performed by viscoelastic model for the solid phase and the Darcy's law for the liquid flow. The calculated results for forging force and filling limitations will be compared to experimental data. The filling simulation of simple products performed with the uniform billet temperature(584$^{\circ}C$) from the induction heating by the commercial package MAGMAsoft. The initial step of computation is the touching of semi-solid material with the end of die gate and the initial concept of proposed system just fit with the capability of MAGMAsoft.

  • PDF

CLSM을 이용한 고해과정 중 섬유벽 두께 변화의 종이 특성 영향 분석 (Effects of Fiber Wall Thickness on Paper Properties Using CLSM)

  • 김서환;박종문;김철환
    • 펄프종이기술
    • /
    • 제31권1호
    • /
    • pp.39-45
    • /
    • 1999
  • Refining in papermaking plays an important role in changing fiber properties as well as paper properties. The major effects of refining on pulp fibers are internal and external fibrillation, fiber shortening, and fines formation. Many workers showed that internal fibrillation of the primary refining effects was most influential in improving paper properties. In particular, refining produces separation of fiber walls into several lamellae, thus causing fiber wall swelling with water penetration. This leads to the increase of fiber flexibility and of fiber-to-fiber contact during drying. If the fibers are very flexible, they will be drawn into close contact with each other by the force of surface tension as the water is removed during the drainage process and drying stages. In order to study the effect of fiber wall delamination on paper properties, cross-sectional image of fibers in a natural condition had to be generated without distortion. Finally, it was well recognized that confocal laser scanning microscope (CLSM) could be one of the most efficient tool for creating and quantifying fiber wall delamination in combination with image analysis technique. In this study, the CLSM could be used not only to observe morphological features of transverse views of swollen fibers refined under low and high intensity, but also to investigate the sequence of fiber wall delamination and fiber wall breakage. From the CLSM images, increasing the specific energy or refining decreased the degree of fiber collapse, fiber cross-sectional area, fiber wall thickness and lumen area. High intensity refining produced more external fibrillation.

  • PDF

금속의 두께가 도재의 파절강도에 미치는 영향 (A study on the difference of Ceramic fracture strength according to the metal depth)

  • 신무학;최운재;김용원
    • 대한치과기공학회지
    • /
    • 제27권1호
    • /
    • pp.89-95
    • /
    • 2005
  • In the manufacture of ceramo-metal crown, difference of fracture strength according to the metal depth has been known to be an important influence on enough intensity and internal stress to endure an occlusion-pressure as well as aesthetics of rehabilitating similar colour such as natural teeth. Depth of ceramic material could be determined by that of metal in three groups: first case of thin depth, second case of thick depth, and third case of constant depth. For the enhancement of the fracture strength between metal and ceramic materials and aesthetic satisfaction, a study on the bonding force, fracture strength, and aesthetics have been required more. In this study, therefore metal coping were made in three groups of A, B and C by using both ceramic powder of Norithe and metal of Columbium, which have been used primarily in the market. A group was made in $0.2mm\times10mm\times10mm$, B group was made in $0.4mm\times10mm\times10mm$, and, C group was made in $0.8mm\times10mm\times10mm$, respectively. The number of metal coping in each group was 10, and total sample numbers used in this study were 30 metal copings. After these metal coping tissue were in the process of build-up in 1.5mm constant depth of porcelain, firing, and glazing, the fracture strength about each metal coping tissue was investigated using oil press. It was found that the average values of durable occlusion pressure for separation of ceramic material in the porcelain fused to metal crown (PFM) in the each group showed the increasing order of A group (30 bar), B group (42 bar), and C group (44 bar), respectively. Proper depth of metal coping in the PFM was considered to be 0.4mm in the B group because this metal size showed higher durable property to the occlusion pressure and better coupling strength in the ceramo-metal crown.

  • PDF

Compression characteristics of filling gangue and simulation of mining with gangue backfilling: An experimental investigation

  • Wang, Changxiang;Shen, Baotang;Chen, Juntao;Tong, Weixin;Jiang, Zhe;Liu, Yin;Li, Yangyang
    • Geomechanics and Engineering
    • /
    • 제20권6호
    • /
    • pp.485-495
    • /
    • 2020
  • Based on the movement characteristics of overlying strata with gangue backfilling, the compression test of gangue is designed. The deformation characterristics of gangue is obtained based on the different Talbot index. The deformation has a logarithmic growth trend, including sharp deformation stage, linear deformation stage, rheological stage, and the resistance to deformation changes in different stages. The more advantageous Talbot gradation index is obtained to control the surface subsidence. On the basis of similarity simulation test with gangue backfilling, the characteristics of roof failure and the evolution of the supporting force are analyzed. In the early stage of gangue backfilling, beam structure damage directly occurs at the roof, and the layer is separated from the overlying rock. As the working face advances, the crack arch of the basic roof is generated, and the separation layer is closed. Due to the supporting effect of filling gangue, the stress concentration in gangue backfilling stope is relatively mild. Based on the equivalent mining height model of gangue backfilling stope, the relationship between full ratio and mining height is obtained. It is necessary to ensure that the gradation of filling gangue meets the Talbot distribution of n=0.5, and the full ratio meets the protection grade requirements of surface buildings.

Theophylline 鹽酸鹽의 結晶 및 分子構造 (The Crystal and Molecular Structure of Theophylline Hydrochloride)

  • 구정회;신현소;오선숙
    • 대한화학회지
    • /
    • 제22권2호
    • /
    • pp.86-94
    • /
    • 1978
  • Theophylline 鹽酸鹽의 結晶 및 分子 構造를 3次元的인 X-線 回折 data로부터 Patterson法에 의하여 決定하였고, Block-diagonal least square와 Fourier法으로서座標를 精密化하였다. 이化合物은 a = 14.01, b = 11.49, c = 6.77${\AA}$의 單位格子를 가지는 斜方晶系에 屬하는 結晶 이며 空間群은 $P_{na21}$ 이다. 743개의 觀測된 data에 대한 최종 R값은 12.2%이다. Theophylline 分子內 原子間 距離는 유사化合物에서 얻은 값과 거의 일치한다. 이들 原子는 同一平面을 이루고 있으며 HCl의 鹽素原子는 theophylline의 N(1) 原子와 3.06${\AA}$ 距離의 Cl${\cdot}{\cdot}{\cdot}$N(1), 水素結合을 이루고 있다. 모든 分子 는 대략 (001)과 (002)面上에 배열되어 있고 各分子間은 van derWaals force에 의해 三次元的 構造를 이루고 있다.

  • PDF

Die spacer의 두께에 따른 복합레진 inlay의 치은 변연부 미세누출 및 접착양태에 관한 연구 (GINGIVAL MARGIAL LEAKAGE AND BONDING PATTERN OF THE COMPOSITE RESIN INLAY ACCORDING TO VARIOUS THICKNESS OF DIE SPACER)

  • 박태일;신동훈;홍찬의
    • Restorative Dentistry and Endodontics
    • /
    • 제20권1호
    • /
    • pp.152-163
    • /
    • 1995
  • This experiment was performed to observe the adhesion pattern and microleakage in the gingival margin according to variation in the resin cement thickness which results from thickness of Die spacer. which is considered to effect the adaptability of the composite resin inlays. Clearfil CR inlays were fabricated on stone models with CR Sep applicated once and Nice fit twice, 4 times, and 6 times each. After 2nd curing within the CRC-100 oven, CR inlays were cemented with CR inlay cement. Dye(2% methylene blue) penetration and adhesion pattern were evaluated after sectioning of gingival margin into :3 pieces. The results were as follows ; 1. The thickness of resin cement showed unevenchanging pattern with that of die spacer, namely, it was increased until 4 times' application of Nice-Fit but was decreased with 6 times' application of that. 2. The degree of dye penetration wasn't affected by cement thickness within a limited value. 3. Most of dye penetration was shown through the interface between cement and enamel rather than the interface between cement and CR inlay. This shows that the affinity of resin cement for CR inlay was superior to the adhesive strength with tooth structure. 4. No gap was found at the interface between enamel and cement but some showed separation between dentin and cement. It is concidered that the contraction force of cement was less than the bond strength with the enamel. 5. Lots of voids were found in the CR inlay and resin cement. There was a pooling tendency of bonding agent and cement in the axiogingival line angle portion. 6. In some specimens, cracks were shown in enamel margin. From this it could be considered that cavity preparation and surface treatment weakened the tooth structure.

  • PDF

무가선 산악트램 급전을 위한 지상 집중식 급전장치 개발 (Development of Local Ground Pantograph for Power Supply to Wireless Mountain Trams)

  • 서승일
    • 한국산학기술학회논문지
    • /
    • 제21권4호
    • /
    • pp.268-275
    • /
    • 2020
  • 국내 산악 지역 자연공원에서는 자연 환경과 주변 조망을 보존하기 위해 전차선의 설치가 불가하다. 따라서 산악 트램은 무가선으로 운행되어야 한다. 이를 위해 본 연구에서는 차량의 추진 배터리에 전기를 공급할 수 있는 지상 집중식 급전장치를 개발하고 동작 및 기능 시험을 실시하여 성능을 검증하였다. 개발한 지상 집중식 급전장치는 검수고 또는 정거장의 한 지점에 고정 설치되어 있으며, 차량의 대차가 진입하여 정차하면 스프링 장력으로 암과 집전 슈를 올려 대차 하부에 있는 차량측 집전 바와 접촉하고, 전기를 흘려 배터리에 전력을 공급한다. 지상 집중식이므로 차량 지붕 위의 집전장치와 전차선이 필요 없게 되고, 산악트램은 무가선 상태로 운행을 할 수 있다. 정거장이나 검수고에서 움직이지 않고 정지한 상태에서 집전하므로, 이선이나 아크 발생이 없다. 집전 슈의 마모나 손상을 초래할 수 있는 가동 접촉면이 사라지게 되므로 집전장치 수명이 연장되는 장점이 있다. 시험 결과에 따르면, 절연저항은 기준치인 10㏁ 이상이었고, 전류 335A를 1시간 동안 일정하게 공급하여도 이상 발열이 없음을 확인하였다.

가정용 냉장고의 얼음 완전 취출 메커니즘의 설계 (Design of Ice Dispenser Mechanism of Household Refrigerator for Full Discharging)

  • 우민수;정융호
    • 한국산학기술학회논문지
    • /
    • 제21권3호
    • /
    • pp.65-72
    • /
    • 2020
  • 얼음을 제공하는 기능이 구비된 냉장고는 대부분 냉장고 내부의 얼음 저장소에 미리 얼음을 채워 두고 사용자가 필요할 때 많은 양의 얼음을 취출할 수 있도록 하고 있다. 그러나 냉장고의 얼음 저장소에 얼음이 채워진 상태로 냉장고가 장기간 사용되지 않거나 정상적인 동작 중에도 시간이 경과하면 얼음이 서로 엉기는 현상이 발생한다. 이렇게 엉긴 얼음 덩어리를 분리시키는 메커니즘이 구비되어 있으나 얼음 엉김 현상이 심할 경우 얼음이 완전히 취출되지 못하는 문제가 있다. 본 연구에서는 이러한 문제를 해결하기 위해 얼음이 엉기는 과정과 얼음의 분리력에 관한 기존의 연구를 조사하였고, 인위적으로 얼음을 엉기게 하여 다양한 조건에서 얼음의 취출 정도를 실험하였다. 이 과정에서 얼음의 취출을 방해하는 기존 얼음 저장소 형상의 문제점에 착안하여 이를 개선하기 위한 형상과, 완전 취출을 위해 얼음 분쇄 메커니즘의 작동 반경을 넓히는 새로운 메커니즘을 제안하였다. 제안된 메커니즘의 시제품을 제작하고 실제 냉장고에 적용하여 얼음이 완전 취출됨을 검증하였다. 그 결과 기존 얼음 저장소의 형상과 분쇄 메커니즘에서 얼음 취출률이 65%정도이었으나, 제안된 형상과 메커니즘에서는 완전히 추출되었다.