• Title/Summary/Keyword: Separation Coefficient

Search Result 432, Processing Time 0.027 seconds

Characterization and Preparation of Polyimide Copolymer Membranes by Non-Solvent Induced Phase Separation Method (비용매 유도 상전이법을 이용한 공중합체 폴리이미드 분리막의 제조 및 특성평가)

  • Lee, Jung Moo;Park, Jeong Ho;Kim, Deuk Ju;Lee, Myung Gun;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.25 no.4
    • /
    • pp.343-351
    • /
    • 2015
  • In this study, we synthesis polyimide with high gas selectivity using 2,2-bis(3,4-carboxylphenyl) hexafluoropropane, 2,4,6-Trimethyl-1,3-phenylenediamine (DAM) and 4,4-Methylenedianiline (p-MDA), and then the asymmetric membrane was fabricated by non-solvent phase separation method. To confirm the property change of the membrane using different solvent, we measured and compared the viscosity of the polymer solution, cloud point and non-solvent phase separation coefficient. The morphology and gas separation property of membrane prepared by phase separation method was confirmed using Field Emission Scanning Electron Microsope and the single gas permeation measurement apparatus. The single gas ($CH_4$, $N_2$, $O_2$, $CO_2$) permeation property and selectivity value of the membrane prepared with NMP was higher than the membrane prepared with DMAc. We confirmed that the gas selectivity of the membrane increased and the permeation property decreased with increasing of the solvent evaporation time.

Analysis of Cross-Correlation Coefficient for Chirp Spread Spectrum Systems (처프 확산 대역 시스템을 위한 상호 상관 계수 분석)

  • Kim, Kwang-Yul;Lee, Seung-Woo;Kim, Yong-Sin;Lee, Jae-Seang;Kim, Jin-Young;Shin, Yoan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1417-1419
    • /
    • 2016
  • In order to improve the transmission performance of a chirp signal-based chirp spread spectrum system, the cross-correlation coefficient (CCC) should be carefully considered. In this paper, we derive the CCC for analyzing the transmission performance and propose the optimal chirp rate based on the analysis. The simulation results verify the mathematical derivations and show that the considered scheme can improve the performance by considering the CCC.

Reynolds number effects on twin box girder long span bridge aerodynamics

  • Kargarmoakhar, Ramtin;Chowdhury, Arindam G.;Irwin, Peter A.
    • Wind and Structures
    • /
    • v.20 no.2
    • /
    • pp.327-347
    • /
    • 2015
  • This paper investigates the effects of Reynolds number (Re) on the aerodynamic characteristics of a twin-deck bridge. A 1:36 scale sectional model of a twin girder bridge was tested using the Wall of Wind (WOW) open jet wind tunnel facility at Florida International University (FIU). Static tests were performed on the model, instrumented with pressure taps and load cells, at high wind speeds with Re ranging from $1.3{\times}10^6$ to $6.1{\times}10^6$ based on the section width. Results show that the section was almost insensitive to Re when pitched to negative angles of attack. However, mean and fluctuating pressure distributions changed noticeably for zero and positive wind angles of attack while testing at different Re regimes. The pressure results suggested that with the Re increase, a larger separation bubble formed on the bottom surface of the upstream girder accompanied with a narrower wake region. As a result, drag coefficient decreased mildly and negative lift coefficient increased. Flow modification due to the Re increase also helped in distributing forces more equally between the two girders. The bare deck section was found to be prone to vortex shedding with limited dependence on the Re. Based on the observations, vortex mitigation devices attached to the bottom surface were effective in inhibiting vortex shedding, particularly at lower Re regime.

Improvement on Large-Eddy Simulation Technique of Turbulent Flow (난류유동의 Large-Eddy Simulation 기법의 알고리즘 향상에 관한 연구)

  • 앙경수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1691-1701
    • /
    • 1995
  • Two aspects of Large-Eddy Simulation(LES) are investigated in order to improve its performance. The first one is on how to determine the model coefficient in conjunction with a dynamic subgrid-scale model, and the second one is on a wall-layer model(WLM) which allows one to skip near-wall regions to save a large number of grid points otherwise required. Especially, a WLM suitable for a separated flow is considered. Firstly, an averaging technique to calculate the model coefficient of dynamic subgrid-scale modeling(DSGSM) is introduced. The technique is based on the concept of local averaging, and useful to stabilize numerical solution in conjunction with LES of complex turbulent flows using DSGSM. It is relatively simple to implement, and takes very low overhead in CPU time. It is also able to detect the region of negative model coefficient where the "backscattering" of turbulence energy occurs. Secondly, a wall-layer model based on a local turbulence intensity is considered. It locally determines wall-shear stresses depending on the local flow situations including separation, and yields better predictions in separated regions than the conventional WLM. The two techniques are tested for a turbulent obstacle flow, and show the direction of further improvements.rovements.

Numerical optimization of Wells turbine for wave energy extraction

  • Halder, Paresh;Rhee, Shin Hyung;Samad, Abdus
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.1
    • /
    • pp.11-24
    • /
    • 2017
  • The present work focuses multi-objective optimization of blade sweep for a Wells turbine. The blade-sweep parameters at the mid and the tip sections are selected as design variables. The peak-torque coefficient and the corresponding efficiency are the objective functions, which are maximized. The numerical analysis has been carried out by solving 3D RANS equations based on k-w SST turbulence model. Nine design points are selected within a design space and the simulations are run. Based on the computational results, surrogate-based weighted average models are constructed and the population based multi-objective evolutionary algorithm gave Pareto optimal solutions. The peak-torque coefficient and the corresponding efficiency are enhanced, and the results are analysed using CFD simulations. Two extreme designs in the Pareto solutions show that the peak-torque-coefficient is increased by 28.28% and the corresponding efficiency is decreased by 13.5%. A detailed flow analysis shows the separation phenomena change the turbine performance.

HF-Band Wireless Power Transfer System with Adaptive Frequency Control Circuit for Efficiency Enhancement in a Short Range (근거리에서 효율 향상을 위해 적응 주파수 제어 회로를 갖는 HF-대역 무선 전력 전송 시스템)

  • Jang, Byung-Jun;Won, Do-Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.11
    • /
    • pp.1047-1053
    • /
    • 2011
  • In this paper, we proposed an HF-band wireless power transfer system with adaptive frequency control circuit for efficiency enhancement in a short range. In general, a wireless power transfer system shows an impedance mismatching due to a reflected impedance, because a coupling coefficient is varied with respect to separation distance between two resonating loop antennas. The proposed method can compensate this impedance mismatching by varying input frequency of a voltage-controlled oscillator adaptively with respect to separation distance. Therefore, transmission efficiency is enhanced in a short distance, where large impedance mismatch occurs. The adaptive frequency circuit consists of a directional coupler, a detector, and a loop filter. In order to demonstrate the performance of the proposed system, a wireless power transfer system with adaptive frequency control circuits is designed and implemented, which has a pair of loop antennas with a dimension of 30${\times}$30 $cm^2$. From measured results, the proposed system shows enhanced efficiency performance than the case without adaptive frequency control.

Experimental Study on Separation of Cephalosprotin C by Spiral-Wound Reverse Osmosis Module (나권형 역삼투 모듈에 의한 Cephalosporin C의 농축분리에 관한 실험연구)

  • Shin, Dong-Youp;Ryu, Jeung;Lee, Yong-Chul
    • Applied Chemistry for Engineering
    • /
    • v.10 no.4
    • /
    • pp.563-567
    • /
    • 1999
  • Reverse osmosis concentration for cephalosproin C was studied using a polyamide composite membrane, FT-30 in spiral wound type with high solute rejection. The experiments were carried out in the aqueous solution of cephalosporin C for water flux, solute rejection and mass transfer coefficient under applied pressure of $4{\sim}20kg/cm^2$, feed concentration of 100~1000 mg/L and feed velocity of 2.8 and 5.6 L/min at room temperature. The effect of operating pressure on the separation of cephalosporin C showed that permeate flux increased with increasing operation pressure. These results are consistent with those predicted by Kedem-Katchalsky model. Solute rejection was nearly 1. The increase of feed concentration caused the reduction of cephalosporin C rejection, which was higher at low concentration than at high concentration, but degree of reduction was small.

  • PDF

An experimental study on reefing effect on aerodynamics characteristics of cruciform parachute (십자형 낙하산의 Reefing 효과에 따른 공력특성에 관한 실험연구)

  • Lee, Chang-Gu;Kim, Beom-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.7
    • /
    • pp.628-633
    • /
    • 2008
  • Cruciform parachute has advantage in manufacture and expanse compare with circular parachute. But it has disadvantage in stability. Wind tunnel test were conducted to investigate the effects of reefing-line on the cruciform parachutes with the purpose of finding aerodynamics characteristics of the parachute such as drag coefficient, normal force coefficient. Aerodynamics characteristics are measured accurately with 6-components pyramidal balance and load cells which were installed in the fixed-body. Four different models were tested and the test results were compared with each other. The aerodynamics characteristics were changed with reefing-line length. Separation edge was developed due to reefing-line also it made increasing of the stability. The cruciform parachute which improve stability is supposed to be used in variety purpose.

Effects of pH on the Separation and Purification of Model Protein using Counter Current Distribution (역류분배를 이용한 모델단백질의 분리정제시 pH의 영향에 관한 연구)

  • Lee, Boo-Yong;Lee, Chang-Ho;Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.56-60
    • /
    • 1990
  • The changes in the partition coefficient of model proteins (lysozyme, myoglobin, conalbumin, bovine serum albumin) in an aqueous two-phase system formed by polyethylene glycol and dextran were examined in order to improve the capacity of counter current distribution for the protein fractionation and concentration. The protein distribution patterns in CCD with 30 tubes varied with the pH of the system, and both theoretical and measured values agreed well. From the mixture of model protein, pure BSA fraction was appeared at the upper-phase of 14th tube having pH 4.5, pure myoglobin at the lower-phase of the 16th be with pH 6.5 and conalbumin at the lower-phase of 4th tube with pH 12. The result indicated the possible use of CCD method for protein fractionation, if the partition coefficient of proteins was manipulated by pH and other means.

  • PDF

A Study on The Interference between Global Navigation Satellite Systems (위성항법 시스템 간 간섭 영향에 관한 연구)

  • Kim, Jeong-Been;Kim, Jae-Kil;Lee, Sung-Yoon;Lee, Je-Won;Kim, Kap-Jin;Song, Ki-Won;Ahn, Jae-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6C
    • /
    • pp.512-519
    • /
    • 2012
  • To design a new Navigation Satellite System signal, we should analyze the influence of inter-system interference to existing Global Navigation Satellite Systems(GNSS). Various GNSS systems such as GSP, GALILEO, Compass use same frequence band and incur inter-system interference due to the overlapping spectrums. In this paper, we consider L2 Band for new Navigation Satellite System and propose the BOCcos(15,2.5) signal what has least Spectral Separation Coefficient with GPS L2 system. Assuming 4 stationary satellite over Korea, we simulate the effect of interference. As a result, proposed system shows very small mutual interference effect and negligible effective signal to noise ratio(SNR) loss, compared to the interferences between GNSS systems in L1 Band.