• Title/Summary/Keyword: Separated-Flow Transition

Search Result 23, Processing Time 0.023 seconds

Generation and Suppression of Non-uniform Flow in Scramjet Engines

  • Ben, Hidenori;Watanabe, Toshinori
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.69-74
    • /
    • 2004
  • In scramjet engines with sidewall compression inlet, it is well known that a non-uniform flow appears since a separated region is generated near the flow centerline on the body side. The separated region is caused by shock-boundary layer interaction and likely to cause un-start phenomena since the flow in the separated region is subsonic and acts as a communication path between the isolator and the combustor. In the present study, the non-uniform flow characteristics in the scramjet inlet-isolator region are numerically studied in detail. Effect of flow suction from body sidewall surface on the non-uniform flow field numerically examined to clarify the flow mechanism to suppress the un-start transition.

  • PDF

Flow Characteristics of the Boundary Layer Developing over a Turbine Blade Suction Surface (터빈 동익 흡입면에서 발달하는 경계층의 유동특성)

  • Chang, Sung Il;Lee, Sang Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.10
    • /
    • pp.795-803
    • /
    • 2015
  • The boundary layer developing over the suction surface of a first-stage turbine blade for power generation has been investigated in this study. For three locations selected in the region where local thermal load changes dramatically, mean velocity, turbulence intensity, and one-dimensional energy spectrum are measured with a hot-wire anemometer. The results show that the suction-surface boundary layer suffers a transition from a laminar flow to a turbulent one. This transition is confirmed to be a "separated-flow transition", which usually occurs in the shear layer over a separation bubble. The local minimum thermal load on the suction surface is found at the initiation point of the transition, whereas the local maximum thermal load is observed at the location of very high near-wall turbulence intensity after the transition process. Frequency characteristics of turbulent kinetic energy before and after the transition are understood clearly from the energy spectrum data.

Identification of Two-Phase Flow Patterns Based on Statistical Characteristics of Differential Pressure Fluctuations (차압교란치의 통계적 특성에 의한 2상유동양식의 판별)

  • 이상천;이정표;김중엽
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1290-1299
    • /
    • 1990
  • Characteristics of flow patterns in horizontal gas-liquid two-phase flow for two different sizes of pipe were investigated based upon a statistical analysis of differential pressure fluctuations at an orifice. The probability density function and the power spectral density function of the traces indicate peculiar shapes depending upon the two-phase flow regime. Mixed and separated flows also could be identified by the autocorrelation function. The transition region from separated flow to mixed flow also could be identified by these statistical properties. The experimental data determined by this method were compared with the flow pattern maps suggested by other investigators. The result indicates that the statistical characteristics of differential pressure fluctuations at orifices may be a useful tool for identifying flow patterns of horizontal gas-liquid two-phase flow.

Glass Transition Temperature of Honey Using Modulated Differential Scanning Calorimetry (MDSC): Effect of Moisture Content

  • Kim, Mi-Jung;Yoo, Byoung-Seung
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.4
    • /
    • pp.356-359
    • /
    • 2010
  • Glass transition phenomena in nine Korean pure honeys (moisture content 18.3~20.1%) and honey-water mixtures by different water contents (0, 2, 5, and 10% w/w) were investigated with modulated different scanning calorimetry (MDSC). The total, reversing, and non-reversing heat flows were quantified during heating using MDSC. Glass transition was observed from reversing heat flow separated from the total heat flow. The glass transition temperatures ($T_g$) of pure honeys, which are in the range of $-42.7^{\circ}C$ to $-50.0^{\circ}C$, varied a lot with low determination coefficient ($R^2$=0.63), whereas those of honey-water mixtures decreased with a decrease in honey content. The $T_g$ values were also more significantly different among honey-water mixtures when compared to pure honeys, indicating that in the honey-water mixture system the $T_g$ values appear to be greatly dependent on moisture content. The measured heat capacity change (${\Delta}C_p$) was not influenced by moisture content.

Flow Control of Smart UAV Airfoil Using Synthetic Jet Part 2 : Flow control in Transition Mode Using Synthetic Jet (Synthetic jet을 이용한 스마트 무인기(SUAV) 유동제어 Part 2 : 천이 비행 모드에서 synthetic jet을 이용한 유동제어)

  • Kim, Min-Hee;Kim, Sang-Hoon;Kim, Woo-Re;Kim, Chong-Am;Kim, Yu-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.12
    • /
    • pp.1184-1191
    • /
    • 2009
  • In order to reduce the download around the Smart UAV(SUAV) at Transition mode, flow control using synthetic jet has been performed. Many of the complex tilt rotor flow features are captured including the leading and trailing edge separation, and the large region of separated flow beneath the wing. Based on the results of part 1 of the present work, synthetic jet is located at 0.01c, $0.95c_{flap}$ and it is operated with the non-dimensional frequency of 0.5, 5 to control the leading edge and trailing edge separation. Consequently, download is substantially reduced compared to with no control case at transition mode using leading edge jet only. The present results show that the overall flight performance and stability of the SUAV can be remarkably improved by applying the active flow control strategy based on synthetic jet.

FLOW CONTROL OF SMART UAV AIRFOIL USING SYNTHETIC JET (Synthetic jet을 이용한 스마트 무인기 익형 주위의 유동 제어)

  • Kim, Min-Hee;Kim, Sang-Hoon;Kim, Woo-Re;Kim, Chong-Am;Kim, Yu-Shin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.43-50
    • /
    • 2009
  • In order to reduce the download around Smart UAV(SUAV) at hovering and transition mode, flow control using synthetic jet has been performed. Many of the complex tilt rotor flow features are captured including wing leading and trailing edge separation, and the large region of separated flow beneath the wing. First, in order to control the trailing edge separation, synthetic jet is located at 30, 95% of flap chord length. The flow control using synthetic jet on flap shows that stall characteristics depending on several mode can be improved through separation vortices resizing. Also, a flap jet and a 0.01c jet which control the separation efficiently are applied at the same time at each test case because controlling the leading edge separation is essential for download reduction. As a result, time averaged download is reduced about 18% comparing with no control case at hovering mode and 48% at transition mode. These research results show that if flow control using leading edge jet and trailing edge jet is used effectively to the SUAV in overall flight mode, flight performance and stability can be improved.

  • PDF

Study on the Unsteady Wakes Past a Square Cylinder near a Wall

  • Kim Tae Yoon;Lee Bo Sung;Lee Dong Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1169-1181
    • /
    • 2005
  • Experimental and numerical studies on the unsteady wake field behind a square cylinder near a wall were conducted to find out how the vortex shedding mechanism is correlated with gap flow. The computations were performed by solving unsteady 2-D Incompressible Reynolds Averaged Navier-Stokes equations with a newly developed ${\epsilon}-SST$ turbulence model for more accurate prediction of large separated flows. Through spectral analysis and the smoke wire flow visualization, it was discovered that velocity profiles in a gap region have strong influences on the formation of vortex shedding behind a square cylinder near a wall. From these results, Strouhal number distributions could be found, where the transition region of the Strouhal number was at $G/D=0.5{\sim}0.7$ above the critical gap height. The primary and minor shedding frequencies measured in this region were affected by the interaction between the upper and the lower separated shear layer, and minor shedding frequency was due to the separation bubble on the wall. It was also observed that the position (y/G) and the magnitude of maximum average velocity $(u/u_{\infty})$ in the gap region affect the regular vortex shedding as the gap height increases.

Transition Flow Analysis According to the Change of Reynolds Number for Supersonic Launch Vehicle Fairing Expansion Area (초음속 발사체 선두 팽창부의 레이놀즈수 변화에 따른 천이 유동 해석)

  • Shin, Ho-Cheol;Park, Soo-Hyung;Byun, Yung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.5
    • /
    • pp.367-375
    • /
    • 2017
  • RANS computational analysis was performed on the head of the launch vehicle including the hammerhead nose pairing in the supersonic regime. The two-dimensional axisymmetric analysis was performed by using laminar, fully turbulent and transition models and compared with the experimental data. It was observed that different flow phenomena occurred depending on the Reynolds number. Under the high Reynolds number condition, the boundary layer becomes turbulent, which is not separated from the surface of the launch vehicle. With the low Reynolds number condition, laminar separation bubble was produced due to the separation and reattachment of the boundary layer on the expansion-compression edge of the hammerhead type nose fairing. The three-dimensional computations with the angle of attack showed a fully detached vortical structure due to the laminar separation bubble. It is proved that the turbulent transition should be considered to predict the separation bubble with the Reynolds number.

Drirect Numerical Simulation of Transitional Separated Flows Part II:Secondary Instability (천이박리유동의 직접수치모사 Part II:이차적 불안정성)

  • Yang, Gyeong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.9
    • /
    • pp.2973-2980
    • /
    • 1996
  • Secondary instability in an obstructed channel is investigated using direct numerical simulation. Flow geometry under consideration is a plane channel with two-dimensional thin obstacles mounted symmetrically in the vertical direction and periodically in the streamwise direction. Flow separation occurs at the tip of the sharp obstacles. As a basic flow, we consider an unsteady periodic solution which results from Hopf bifurcation. Depending on the Reynolds number, the basic flow becomes unstable to three-dimensional disturbances, which results in a chaotic flow. Numerical results obtained are consistent with experimental findings currently available.

Study on Determination of Seven Transition Metal Ions in Water and Food by Microcolumn High-Performance Liquid Chromatography

  • Hu, Qiufen;Yang, Guangyu;Li, Haitao;Tai, Xi;Yin, Jiayuan
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.5
    • /
    • pp.694-698
    • /
    • 2004
  • A new method for the simultaneous determination of seven transition metal ions in water and food by microcolumn high-performance liquid chromatography has been developed. The lead, cadmium, mercury, nickel, cobalt, silver and tin ions were pre-column derivatized with tetra-(4-aminophenyl)-porphyrin ($T_4$-APP) to form the colored chelates which were then enriched by solid phase extraction with $C_{18}$ cartridge. The enrichment factor of 50 was achieved by eluted the retained chelates from the cartridge with tetrahydrofuran (THF). The chelates were separated on a ZORBAX Stable Bound microcolumn ($2.0{\times}50\;mm,\;1.8\;{\mu}m$)with methanol-tetrahydrofuran (95 : 5, v/v, containing 0.05 mol/L pyrrolidine-acetic acid buffer salt, pH = 10.0) as mobile phase at a flow rate of 0.5 mL/min and detected with a photodiode array detector from 350-600 nm. The seven chelates were separated completely within 2.0 min. The detection limits of lead, cadmium, mercury, nickel, cobalt, silver and tin are 4 ng/L, 3 ng/L, 6 ng/L, 5 ng/L, 5 ng/L, 6 ng/L, 4 ng/L respectively in the original samples. This method was applied to the determination of the seven transition metal in water and food samples with good results.