• Title/Summary/Keyword: Separated sewer system

Search Result 14, Processing Time 0.025 seconds

Analysis of Infiltration/Inflow at Dry and Rainfall Periods in Separated Sewer System of Nakdong River Basin (건기와 우기시 낙동강 유역 분류식 하수관거의 유입수/침입수의 분석)

  • Gu, Joung-Eun;Lee, Hong-Shin;Son, Gun-Tae;Lee, Sung-Eok;Lee, Seung-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.1
    • /
    • pp.75-84
    • /
    • 2011
  • This study was conducted to provide a basic information for the establishment of operation and treatment processes in sewer system of Nakdong river basin to minimize the overall pollutants loading to water body. Sewage flowrates were regularly measured and monitored at various sampling points of newly-built separated sewer system located in G City GA sites. To assess the inflow sewage flowrate, various calculating methods such as water-use evaluation, average-minimum daily flow quality evaluation, minimum daily flow evaluation, night water-use evaluation were used. Average I/Is were calculated except water-use evaluation. Average I/Is were found to be 6.5 $m^{3}/d$, 3.5 $m^{3}/d$, 7.7 $m^{3}/d$ at GA-1, GA-2, GA-3 points respectively. I/I ratios of three areas were found to be 4.8 %, 2.0 % and 2.7 % respectively and were obviously lower than those of the other separated sewer systems as shown in the previous studies.

Conservative Adjustment of the Standard Calculation Method of Inflow Water Into a Separated Sewer System (분류식 하수관로에서 유입수 표준매뉴얼 산정방법의 보수적 수정 결과)

  • Chu, Minkyeong;Bae, Hyokwan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.5
    • /
    • pp.423-430
    • /
    • 2020
  • To improve the low treatment efficiency of sewage treatment plants, the separated sewer system must be maintained to provide an adequate flow rate and quality of the sewage under the effect of inflow. In this study, data from five locations of Namsuk, Dukgok1, Dukgok2, Kanggu, and Opo were used to conservatively calculate the inflow water volume. The sewer flow and rainfall data were collected in 2017. The factors in the standard method used to calculate the inflow of the combined sewer pipes including "rainy days", "rainfall impact period", and "period for basal sewer" were defined as 3 mm/day, continuous rain for two days, and two weeks prior to the inflow generation, respectively. "Rainy days", "rainfall impact period", and "period for basal sewer" were conservatively adjusted to 5 mm/day, continuous rain for five days, and three weeks prior to the inflow generation, respectively. As a results of the adjustment, the linearity (r2) was improved except for in Dukgok1. This implies that the conservative adjustment made in this study could improve the management quality of sewer pipes. Also, the linear correlation coefficient (ai) between inflow and rainfall showed a large difference between the target locations, which can be another monitoring factor affecting the quality of sewer pipes. To improve the correlation based on the individual characteristics of the locations in Korea, the automatic algorithm for the inflow calculation should be developed by innovative intellectual technologies for application to the entire national area.

The Foul Smelling from Sewer Pipe near Large Apartment Complexes and its Countermeasures II: The Cause for Foul Odors of Sewer Pipes in Residential Areas (대규모 아파트 단지주변 하수관로의 악취 발생과 대책 II: 주거지역 하수관로의 악취원인과 대책)

  • Lee, Jang-Hown;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.5
    • /
    • pp.631-639
    • /
    • 2007
  • This study investigated the construction and operation status of sewer pipes and water-purifier tanks near densely populated areas like large apartment complexes, in order to find out cause for offensive orders. The study results revealed that the main cause arose from the water-purifier tank and public sewer pipes near ordinary residential areas. First, in case of independent water-purifier tanks, the air is forced into the rotten part of large tanks nearby which should be operated in an anaerobic state, so that the tank changes into an aerobic state, or dirty water, which is returned during the sludge return process, falls on the top of the rotten tank, preventing scum from forming within the tank. Such problems cause incompletely purified water in the purifier tank to be discharged, which in turn results in filthy water. Second, in case of public sewer pipes, deteriorated or aging pipes, or the mixture of rain water and dirty water by mixing up combined and separated sewers system can cause foul odors in residential areas. Therefore, offensive odors in residential areas can be radically reduced through the appropriate construction and management of facilities including water-purifier tanks. As well, if more separate sewers are installed as part of an improvement project for public sewer pipes, complaints about foul smell can be minimized.

Determination of Interception Flow by Pollution Load Budget Analysis in Combined Sewer Watershed (II) - Establishment of Intercepting Capacity and Reduction Goal of Overflow Pollution Load - (오염부하 물질수지 분석을 통한 합류식 하수관거 적정 차집용량 결정(II) - 차집용량과 월류오염부하 삭감목표 설정 -)

  • Lee, Doojin;Shin, EungBai
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.5
    • /
    • pp.557-564
    • /
    • 2005
  • The objective of this study is to evaluate a criteria of intercepting capacity and a reduction goal of overflow pollution load in combined sewer system. In the current criteria of intercepting capacity in the domestic sewage facility standard, it is known that three times of peak sewage (Q) in dry period or runoff flow by 2mm/hr is not appropriate since the intercepted flow is estimated by runoff and show different result even in the same watershed. Though a reduction goal of overflow pollution load can be determined from 1) same level of storm-water runoff pollution load in separated storm sewer, 2) less than 5% sewage load in dry weather period, by the domestic sewage facility standard, the simulated results from storm-water model show large differences between two criteria. While it is predicted that sewage pollution load standard three time larger than separated storm sewer standard in high population density and urbanized area, it is shown that separate storm sewer standard larger than sewage pollution load standard in middle population density and developing area. Accordingly, it is proposed that more reasonable intercepting flow and reduction goal of overflows pollution load should be established to minimize discharging pollution load in combined sewer systems. For the purpose, a resonable standard has to be amended by pollution load balance considering the characteristics of a watershed for generation, collection, treatment, and discharging flow.

Determination of the Depth of Sewers in Residental Complexes (주택단지내 하수관거의 매설심도 결정에 관한 연구)

  • Lim, Bong Su;Choi, Eui So;Yi, Yun Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.8 no.3
    • /
    • pp.41-50
    • /
    • 1994
  • The depth of sewers in residential complexes was determined to prevent the separated sewers from misconnection between storm sewer and sanitary sewer, and from the submersion of the basement by minimizing the phenomenon of backwater when it rains. In residential complexes, main causes of the submersion were the misconnection of sewers, rising of the backwater level at outfall in sewer system, poor maintenance of sewers, and lacking in their cross section. Minimum depth of sewers should be over 1.2~1.5m. According to the economic analysis, the depth of 1.5m~3.0m was appropriate for minimizing the submersion of basements and for making the disposal of domestic wastewater more easily.

  • PDF

Change in Influent Concentration of Domestic Wastewater from Separated Sewer and Biological Nitrogen and Phosphorus Removal of a Full Scale Air-vent SBR (분류식 하수관거로의 전환시 유입하수의 성상 변화 및 선회와류식 SBR공법의 처리 특성)

  • Lee, Jang-Hee;Kang, Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.63-70
    • /
    • 2012
  • This study was carried out to investigate change in influent concentration of domestic wastewater flowed from a newly constructed separate sewer system (SSS) and biological nutrients removal efficiency of a full scale Air-vent sequential batch reactor (SBR, $600m^3/d$). The average concentration of $BOD_5$, SS, T-N and T-P from SSS were 246.5 mg/L, 231.6 mg/L, 42.974 mg/L, 5.360 mg/L, respectively which corresponds to 2.2times, 1.2times, 1.8times and 2.1times higher than those from the conventional combined sewer system (CSS). The removal efficiency of $BOD_5$, SS, T-N, and T-P for the Air-vent SBR operated with influent from SSS averaged 99.1%, 99.0%, 91.2%, and 93.5%, respectively. Especially the respective nitrogen and phosphorus removal was 15% greater than that of the SBR operated with influent from CSS. Simultaneous nitrification and denitrification (SND) was observed in an aerobic reactor(II) as a result of DO concentration gradient developed along the depth by the Air-vent system. In order to achieve T-N removal greater than 90%, the C/N ratio should be over 6.0 and the difference between $BOD_5$ loading and nitrogen loading rate be over 100 kg/day (0.130 kg $T-N/m^3{\cdot}d$). Even with high influent T-P concentration of 5.360 mg/L from SSS (compared with 2.465 mg/L from CSS) T-P removal achieved 93.5% which was 15.5% higher than that of the SBR with influent from CSS. This is probably due to high influent $BOD_5$ concentration from SSS that could provide soluble carbon source to release phosphorus at anaerobic condition. In order to achieve T-P removal greater than 90%, the difference between $BOD_5$ loading and phosphorus loading rate should be over 100 kg /day (0.130 kg $T-N/m^3{\cdot}d$).

An Implementation of Remote Monitoring and Control System using CMOS Image sensor (CMOS 이미지 센서를 이용한 원격지 화상 감시 및 제어 시스템 구현)

  • Choi, Jae-Woo;Ro, Bang-Hyun;Lee, Chang-Keun;Hwang, Hee-Young
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.653-656
    • /
    • 2003
  • We have designed embedded web sewer system and ported Linux operating system version 2.4.5 at our system. And then We implemented to control and monitor widely separated hardware and implemented to monitor widely separated image using CMOS image sensor HV7131B. Web server is the Boa web server with General Public License. We designed for this system using of Intel's SA1110 ARM core base processor and connecting input and output device at GPIO port of SA1110. Device driver of General purpose I/O for Embedded Linux OS is designed. And then the application program controlling driver is implemented to use of common gate interface C language. User is available to control and monitor at client PC. This method have benefit to reduce the Expenditure of hardware design and development time against PC base system and have various and capacious application against firmware base system.

  • PDF

Zoning Suitability Analysis to Reduce First-flush Runoff Contamination in a Separated Sewer System (분류식 하수지역의 초기 유출수 오염저감을 위한 용도지구별 적지 분석)

  • Park, In-Hyeok;Ha, Sung-Ryong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.2
    • /
    • pp.13-27
    • /
    • 2008
  • This paper aim to reorganize zoning areas for decreasing first-flush runoff contamination in a separated sewer system via suitability analysis, and to simulate the discharge pollution loads of first-flush runoff using SWMM. For these purposes, diffuse pollution, which is accumulated on a surface and first-flush runoff flow were investigated. Suitability conditions for zoning were defined using the results of these investigation and suitable zoning areas were analyzed for the each condition. AHP analysis was conducted to establish weights of the suitability conditions. The most suitable zoning areas were analyzed via overlaying weights and suitability conditions. From the result, it was noted that the most suitable zones for detached houses & apartments are location they already occupied. Some school areas analyzed were found to be suitable as commercial centers. Some zones within the area analyzed were found to be suitable for commercial zones. From results obtained from simulation, the zone re-organization showed BOD and SS concentration to reduce from 91.2% to 0.09% ans 72.74% to 0.31% respectively.

  • PDF

Identifying dominant parameters of storm-sewer-overflows in seperate sewer system (강우시 도시배수구역의 유출특성 지배인자 분석)

  • Jung, Si Mon;Park, In Hyeok;Ha, Sung Ryong
    • Journal of Wetlands Research
    • /
    • v.10 no.2
    • /
    • pp.105-114
    • /
    • 2008
  • Growth in population and urbanization has progressively increased the loadings of pollutants from non-point sources as well as point sources. Separated sewer overflows(SSO) have been considered as a major cause of water-quality deterioration of natural water-courses in the vicinity of the heavily urbanized areas. The factors defining the magnitude and occurrence of SSO are site-specific. It is important to know exact properties of pollutants contained in SSO to address water quality impacts that are caused by SSO inputs to the receiving waters. Site and event parameters found to have significant influences on urban runoff pollutant EMCs include total event rainfall, antecedent dry period, rainfall intensity. In this study, a field survey was carried out in some selected areas of Cheongju city. Literature from previous similar studies was consulted and some important factors affecting the runoff characteristics of urban drainage areas were analyzed for some selected survey points. It was found that the factors most affecting BOD are the number of dry days prior to rainfall and the intensity of the rainfall. The factor most affecting CODcr is the number of dry days prior to rainfall. The factors most affecting SS are the amount of rainfall and the number of dry days prior to rainfall. The factor most affecting TN is the amount of rainfall. The factor most affecting TP is the amount of rainfall and the number of dry days prior to rainfall.

  • PDF

A Study on Process Optimization for CSOs Application of Horizontal Flow Filtration Technology (수평흐름식 여과기술의 CSOs 적용을 위한 공정 최적화 연구)

  • Kim, Jae-Hak;Yang, Jeong-Ha;Lee, Young-Shin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.56-63
    • /
    • 2018
  • The management of Combined Sewer Overflows(CSOs) and Separated Sewer Overflows(SSOs) discharge directly to the effluent system in an untreated state, which occurs when the facility capacity is exceeded due to heavy rain, has become an important issue in recent years as the heavy rain becomes a regular phenomenon. Despite the continuous development of filtration technology, targeting densely populated urban areas, CSOs are rarely applied. Therefore, this study was carried out to optimize the process to apply CSOs in a pilot-scale horizontal flow filtration system with a rope-type synthetic fiber. The research was carried out in two steps: a preliminary study using artificial samples and a field study using sewage. In the preliminary study using an artificial sample, head loss of the filter media itself was analyzed to be approximately 1.1cm, and the head loss was increased by approximately 0.1cm as the linear velocity was increased by 10m/hr. In addition, the SS removal efficiency was stable at 81.4%, the filtration duration was maintained for more than 6 hours, and the average recovery rate of 98% was obtained by air backwashing only. In the on-site evaluation using sewage, the filtration duration was approximately 2 hours and the average removal efficiency of 83.9% was obtained when belt screen (over 450 mesh) was applied as a pre-treatment process to prevent the premature clogging of filter media. To apply the filtration process to CSOs and SSOs, it was concluded that the combination with the pre-treatment process was important to reinforce the hydraulic dimension for the stable maintain of operation period, rather than efficiency. Compared to the dry season, the quality of incoming sewage was lower in the rainy season, which was attributed to the characteristics of the drainage area with higher sanitary sewerage. In addition, the difference in removal efficiency according to the influent quality of the wet season and dry season was small.