• Title/Summary/Keyword: Seoul batholith

Search Result 5, Processing Time 0.017 seconds

Petrology and geochemistry of the Seoul granitic batholith (서울 화강암질 저반의 암석학 및 지구화학)

  • Kwon, S.T.;Cho, D.L.;Lan, C.Y.;Shin, K.B.;Lee, T.;Mertzman, S.A.
    • The Journal of the Petrological Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.109-127
    • /
    • 1994
  • We report field relationship, petrography and major and trace element chemistry for the central part of the Seoul granitic bathlith of Jurassic age occurring in the Kyonggi massif. The batholith consists mainly of biotite granite (BG) and garnet biotite granite (GBG) with minor tonalite-quartz diorite and biotite granodiorite with or without hornblende. The mode data, along with the those reported by Hong (1984) for the biotite granite (south-BG) in the southern part of the batholith, indicate that the many of BGs and majority of GBG and south-BG are leucocratic. Major element data indicate that these predominant rocks of the batholith are peraluminous. Variation trends in Harker diagrams for the major and trace elements suggest that the BG and GBG are not related by a simple crystal fractionation process. The same is true between the central (BG and GBG) and the southern (south-BG) parts of the batholith, suggesting that the central and southern parts of the Seoul batholith may consist of three separate intrusions. Tectonic discriminations using major and trace element data and the age of emplacement suggest that the batholith represents Jurassic plutonism related to an orogeny, perhaps to a subduction-related continental magmatic arc.

  • PDF

Geochemistry of the Daebo Granitic Batholith in the Central Ogcheon Belt, Korea : A Preliminary Report (중부 옥천대에 분포하는 대보 화강암질 저반의 화학조성 : 예비보고서)

  • Cheong, Chang-Sik;Chang, Ho-Wan
    • Economic and Environmental Geology
    • /
    • v.29 no.4
    • /
    • pp.483-493
    • /
    • 1996
  • The tectonic environment and source characteristics of the Daebo granitic batholith in the central Ogcheon Belt were investigated based upon major and trace element geochemistry. The batholith is comprised of three granite types; a biotite granite (DBBG), K-feldspar megacryst-bearing biotite granite (DBKG), and a more mafic granodiorite (DBGD). The variations of Na and K in the granites can not be explained by simple fractional crystallization from the same primary magma. The irregular behavior of these alkali elements indicates a variety of source materials or incomplete mixing of different source materials. The large ion lithophile (LIL) element enrichment and low Ta/Hf ratios of the granites are typical characteristics of normal, calc-alkaline continental arc granitoids. Based upon REE patterns of the granites, it seems to be unreasonable to regard the felsic DBBG as a late stage differentiate formed by residual melts after the fractionation of major constituent minerals of the more mafic DBGD. Inconsistent variations in ${\varepsilon}_{Nd}(t)$ and LIL element concentrations of the granites preclude a mixing model between primitive melt and LIL element-enriched upper crustal materials. The irregular geochemical variation of the granites is taken to be largely inherited from an already heterogeneous source region.

  • PDF

The Gold-Silver Mineralization of the Deogheun and Beopjeon Mines (덕흔·법전광산(法田鑛山)의 금(金)-은(銀)광화작용(鑛化作用))

  • Park, Hee-In;Hwang, Jeong;Kim, Deog-Lae
    • Economic and Environmental Geology
    • /
    • v.23 no.1
    • /
    • pp.25-33
    • /
    • 1990
  • Gold-silver deposits of Deogheun and Beopjeon mines are composed of veins emplaced in Jurassic granite batholith. Based on ore structure and ore mineralogy, four distinct stages of mineral deposition are recognized in these ore deposits. Gold and silver minerals in Deogheun and Beopjeon-A ore deposits are precipitated in stage III and stage II, respectively. Mineral constituents of ores from these deposits are pyrite, sphalerite, arsenopyrite, pyrrhotite, chalcopyrite, galena, tetrahedrite, electrum, quartz and rhodochrosite. Cubanite, argentite and pyrargyrite occur only in Deogheun ore deposits. Ag content of electrum range from 42 to 66 atomic % in both ore deposits. Filling temperature of fluid inclusion from both ore deposits are as follows; stage I, $211-289^{\circ}$ ; stage II, $205-290^{\circ}$ ; stage III, $190-260^{\circ}$ ; stage IV, $136-222^{\circ}$ in Deogheun ore deposits. In Beopjeon-A ore deposits, stage I, $255-305^{\circ}$ ; stage II, $135-222^{\circ}$ ; stage III, $148-256^{\circ}$ ; stage IV, $103-134^{\circ}$. Salinities of fluid inclusions range from 1.6-8.5 wt. % equivalent NaCl in both ore deposits. Sulfur fugacities through stage II and III in Deogheun ore deposits inferred from data of mineral assemblage and fluid inclusion range from $10^{-11.0}-10^{-16.1}$1bars. Fluid pressure estimated from fluid inclusions which reveal boiling evidence range from 30-190 bars during mineralization in Deogheun ore deposits.

  • PDF

Gold and Silver Mineralization of the Pungjeong Vein, Dadeok Mine (다덕광산(多德鑛山) 풍정맥(楓井脈)의 금은광화작용(金銀鑛化作用))

  • Park, Hee-In;Choi, Suck-Won;Lee, Sang-Sun
    • Economic and Environmental Geology
    • /
    • v.21 no.3
    • /
    • pp.269-276
    • /
    • 1988
  • Ore deposits of Dadeok mine, the largest in the Bonghwa gold mining district, are composed of numerous gold and silver-bearing quartz veins emplaced in granite batholith. Mineralization of the Pungjeong vein, one of the representative vein in the mine was investigated. K-Ar age of sericite in the vein is $84{\pm}5$ Ma. Hypogene 6pen-space filling can be devided into four paragenetic stages; (1) fine grained quartz and carbonate; (2) quartz and carbonates with base metal sulfides, electrum, native silver, argentite, polybasite, freibergite, pyrargyrite, and Cu-Ag-Fe-S minerals; (3) quartz with base metal sulfides; (4) quartz and calcite with or without pyrite. Composition of electrum ranges from 44.17 to 56.50 atomic % Ag. Meanwhile FeS content of sphalerite coexisting with elctrum in stage II range from 0.01 to 1.67 mol. %. Homogenization temperatures for quartz and sphalerite of stage II ($239^{\circ}$ to $310^{\circ}C$), quartz of stage III ($206^{\circ}$ to $255^{\circ}C$) and quartz and calcite of stage IV ($232^{\circ}$ to $253^{\circ}C$) show little time-space variation during mineralization. Salinities of the fluid inclusions range from 5.5 to 12.8wt% NaCI in stage II, 7.3 to 12.3wt% in stage III and 4.5 to 8.0wt% in stage IV. Based on the homogenization temperatures, Fe content of sphalerite and Ag content of electrum, tempera ture and sulfur fugacity for stage II are estimated to be $208^{\circ}$ to $310^{\circ}C$ and $10^{-9.2}-10^{-12.8}$ bars, respectively.

  • PDF

Geochemistry of the Kwanaksan alkali feldspar granite: A-type granite\ulcorner (관악산 알칼리 장석 화강암의 지구화학 : A-형 화강암\ulcorner)

  • S-T.Kwon;K.B. Shin;H.K. Park;S.A. Mertzman
    • The Journal of the Petrological Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.31-48
    • /
    • 1995
  • The Jurassic Kwanaksan stock, so far known to be composed of biotite granite only, has the mineral assemblage of quartz+K-feldspar+plagioclase+biotite${\pm}$gernet. The lithology of the stock is classified as alkali feldspar granite by their mode and plagioclase compositions (An<5). Subsolvus feldspars, rather early crystallization of biotite, and shallow emplacement depth estimated from Q-Ab-Or diagram suggest hydrous nature of the magma, which contrasts with anhydrous A-type like geochemistry described below. Major and trace element compositions of the Kwanaksan stock are distinct from those of the adjacent Seoul batholith, suggesting a genetic difference between the two, The Kwanaksan stock shows geochemical characteristics similar to A-type granite in contrast to most other Mesozoic granites in Korea, in that it has high $SiO_2$(73~78wt%), $Na_2O+K_2O$, Ga(27~47 ppm). Nb(22~40 ppm), Y(48~95 ppm), Fe/Mg and Ga/Al, and low CaO(<0.51 wt%). Ba (8~75 ppm) and Sr(2~23 ppm). However, it has lower Zr and LREE and higher Rb(384~796 ppm) than typical A-type granite. LREE-depleted rare earth element pattern with strong negative Eu anomaly of previous studies is reinterpreted as representing source magma characteristics. The residual material during partial melting is not compatible with pyroxenes, amphibole or garnet, while significant amount of plagioclase is required. Similarity of geochemistry of the Kwanaksan stock to A-type granite suggests the origin of the stock has a chose relationship with that of A-type granite. These observations lead us to propose that the Kwanaksan stock was formed by partial melting of felsic source rock.

  • PDF