In this study, we estimated the spatially-distributed soil moisture at the high resolution ($10m{\times}10m$) using the satellite-based Sentinel-1A/B SAR (Synthetic Aperture Radar) sensor images. The Sentinel-1A/B raw data were pre-processed using the SNAP (Sentinel Application Platform) tool provided from ESA (European Space Agency), and then the pre-processed data were converted to the backscatter coefficients. The regression equations were derived based on the relationships between the TDR (Time Domain Reflectometry)-based soil moisture measurements and the converted backscatter coefficients. The TDR measurements from the 51 RDA (Rural Development Administration) monitoring sites were used to derive the regression equations. Then, the soil moisture values were estimated using the derived regression equations with the input data of Sentinel-1A/B based backscatter coefficients. Overall, the soil moisture estimates showed the linear trends compared to the TDR measurements with the high Pearson's correlations (more than 0.7). The Sentinel-1A/B based soil moisture values matched well with the TDR measurements with various land surface conditions (bare soil, crop, forest, and urban), especially for bare soil (R: 0.885~0.910 and RMSE: 3.162~4.609). However, the Mandae-ri (forest) and Taean-eup (urban) sites showed the negative correlations with the TDR measurements. These uncertainties might be due to limitations of soil surface penetration depths of SAR sensors and complicated land surface conditions (artificial constructions near the TDR site) at urban regions. These results may infer that qualities of Sentinel-1A/B based soil moisture products are dependent on land surface conditions. Although uncertainties exist, the Sentinel-1A/B based high-resolution soil moisture products could be useful in various areas (hydrology, agriculture, drought, flood, wild fire, etc.).
기름 유출 사고는 발생 시 환경과 관련된 다양한 문제들을 야기하므로 신속하게 유출유의 면적과 위치 변화를 파악하는 것이 중요하다. 광학 위성자료를 활용한 기름 유출 탐지의 경우 다양한 위성탑재 센서를 통해 유출유에 대한 정보 수집 후 이를 이용하여 광범위한 기름 유출 범위를 모니터링할 수 있다. 선행 연구에서는 파장별 기름의 반사도를 분석한 후 특정 파장대의 밴드를 이용한 oil spill index가 개발 및 적용되었다. 기름 유출 모니터링을 위해 유출 전후 여러 시기의 위성자료를 분석할 경우 다량의 데이터로 인해 많은 시간과 컴퓨팅 자원이 소비된다. 웹 브라우저를 통해 대량의 위성자료 분석이 가능한 Google Earth Engine을 활용할 경우 효율적으로 기름 유출 탐지가 가능하다. 본 연구에서는 Sentinel-2 MultiSpectral Instrument 위성자료와 클라우드 기반의 위성자료 분석 플랫폼인 Google Earth Engine을 이용하여 기존에 제안된 네 종류의 oil spill index의 다양한 피복 환경에서의 활용성 평가를 수행하였다. 지표 피복별 index 값의 비교를 통해 기름 유출 영역이 타 피복과 잘 구분되는지에 대한 분리도를 평가하고 기름 유출 면적을 산정하였다. 본 연구 결과를 통해 Google Earth Engine이 기름 유출 광역 모니터링에 효율적으로 활용 가능하다는 것을 확인하였고, 복잡한 지표 피복이 분포하는 다른 지역에 기름 유출 사고 발생 시 우수한 성능으로 평가된 oil spill index B ((B3+B4)/B2)와 C (R: B3/B2, G: (B3+B4)/B2, B: (B6+B7)/B5)의 적용은 효과적인 기름 유출 모니터링에 기여할 것으로 판단된다.
본 연구에서는 Landsat 8/9 OLI와 Sentinel-2 MSI 위성 영상을 활용한 다시기 영상 데이터를 이용하여 다양한 분광 지수를 기반으로 국내 산불 피해 면적 탐지 정확도를 분석하였다. 2022년 3월 경상북도 울진에서 발생하였던 산불을 대상으로 Difference Normalized Burn Ratio (dNBR), Relative Difference Normalized Burn Ratio (RdNBR), Burned Area Index (BAI) 등의 지수를 활용하여 산불피해 면적 탐지에 활용하였다. 비교적 높은 공간 해상도를 가진 Sentinel-2 영상을 기반으로 참조 자료를 제작하였다. 총 6개의 지수 산출물을 기반으로 Sentinel-2, Landsat 8/9으로 총 4개 위성에 대해 산불 피해 정확도를 각각 분석하였다. Landsat 8/9과 Sentinel-2는 각각 16일, 10일 주기로 영상을 제공하고 있지만 구름으로 인해 영상 취득에 어려움이 많은 편이며, 우리나라는 4월부터 식생의 생장이 시작되어 봄철 산불 피해 분석 시 산불발생 전후 영상을 활용하는 경우 식생의 생장으로 인한 변화가 커서 정확도 높은 탐지에 어려움이 있다. 따라서, 본 연구는 2월에서 5월까지의 다시기 Landsat 8/9과 Sentinel-2 영상 중 같은 날짜를 기반의 영상을 서로 사용하여 시간해상도의 한계를 극복하고 탐지 정확도가 상대적으로 높은 지수를 비교 분석했다. 본 연구 결과는 한국형 산불피해 탐지 지수/모델 개발을 위한 입력 자료 등으로 활용되어 최적화된 산불 지수를 기반으로 정확도 높은 산불 피해 면적 탐지에 활용될 수 있을 것으로 기대된다.
본 연구에서는 합성개구레이더(Synthetic Aperture Radar, SAR) 기반의 식생을 고려하는 후방산란모델 Water Cloud Model (WCM)을 활용한 토양수분 산정 연구를 수행하였다. 금강 상류의 용담댐유역을 포함한 40 × 50 km2 영역의 Sentinel-1 SAR 및 Sentinel-2 MSI (Multi-Spectral Instrument) 영상을 수집하여 연구에 활용하였다. WCM의 식생변수로는 Sentinel-1 기반의 식생지수 RVI (Radar Vegetation Index), 탈분극비(Depolarization Rario, DR)와 Sentinel-2 기반의 NDVI (Normalized Difference Vegetation Index)를 활용하였다. WCM의 정모델링(forward modeling)은 토양수분과 후방산란계수의 특성이 유사한 3개 Group으로 나누어 수행하였다. 토양수분과 후방산란계수의 선형적인 관계가 명확할수록 Group의 모의 성능이 더 높게 나타났으며, 식생지수 별로는 NDVI, RVI, DR 순으로 정확도가 높았다. 토양수분을 모의하기 위해 모의된 후방산란계수를 반전(inversion)하였으며, 모의 성능은 정모델링 결과와 비례하였다. WCM 모의의 오류는 실측 후방산란계수 기준 약 -12dB를 기점으로 증가하는 양상을 보였다.
정규식생지수는 농업분야에 가장 많이 사용된 원격탐사 자료로, 현재 대부분의 광학위성에서 제공되고 있다. 특히 고해상도 광학위성영상이 제공되면서 농업 활용 분야에 따른 최적의 광학위성영상의 선택이 매우 중요한 이슈가 되었다. 본 연구에서는 국내 논지역의 정규식생지수 모니터링 시 가장 최적의 광학위성영상을 정의하고 이를 위해 필요한 해상도 관련 요구조건을 도출하고자 한다. 이를 위해 전 세계적으로 많이 사용되는 MOD13, Landsat-8, Sentinel-2A/B, PlanetScope 위성의 정규식생지수영상을 대상으로 국내 당진 논지역의 공간분포 및 2019년부터 2022년까지 시계열 패턴을 비교, 분석하였다. 각 자료는 3-250 m의 공간해상도와 다양한 주기해상도로 제공되며, 정규식생지수를 산출할 때 사용되는 분광밴드의 영역도 약간의 차이가 있다. 분석 결과 Landsat-8은 가장 낮은 정규식생지수 값을 나타내며 공간적으로 변이도 매우 낮았다. 이에 비해 MOD13 정규식생지수 영상은 PlanetScope 자료와 비슷한 공간분포 및 시계열 패턴을 나타났으나 낮은 공간해상도로 인해 논 주변지역의 영향을 받았다. Sentinel-2A/B는 넓은 근적외선밴드 영역으로 인해 상대적으로 약간 낮은 정규식생지수 값을 나타내었으며, 특히 생육 초기시기에 그 특징이 두드러졌다. PlanetScope의 정규식생지수가 상세한 공간적 변이 및 안정적인 시계열 패턴을 제공하나 높은 구매가격을 고려하면 공간적으로 균일한 논지역보다는 밭지역에서 그 활용성이 높을 것으로 사료된다. 이에 따라 국내 논지역에 대해서는 250 m급 MOD13 정규식생지수나 10 m급 Sentinel-2A/B가 가장 효율적일 것으로 사료되나 작물의 개체에 대한 상세 물리량 추정을 위해서는 고해상도 위성영상이 활용될 수 있다.
쌀 수급 조절 정책의 합리적 수립을 지원하기 위해서는 벼 재배면적의 조기 추정이 필요하다. 본 연구는 국내 벼 주산지인 김제시를 대상으로 Sentinel-1 위성영상을 활용하여 이앙이 마무리되는 7월 초순 벼 재배면적을 조기에 추정하기 위해 최적의 훈련자료 수집을 위한 무인기(UAV) 영상 활용 방안을 제시하고자 수행하였다. 5월부터 7월 초까지 수집한 Sentinel-1 위성영상은 ESA에서 제공하는 SNAP(SeNtinel application platform, Version 8.0)프로그램으로 전처리하고 팜맵을 활용하여 농경지만을 추출하였다. 벼 재배지 중심 지역과 벼·콩 혼재지 무인기 영상 촬영 영역을 혼합하여 훈련자료로 선정하여 김제시 전체 벼 재배지를 추정한 결과, 정확도와 카파 계수는 각각 89.9%, 0.774로 가장 좋은 결과를 보였는데, 이는 김제시 전역을 대상으로 무작위 표본조사를 수행하여 분류한 결과와 비교 시 전체 정확도 1% 내외, 카파 계수 0.02~0.04 범위에서 차이를 보여 벼 재배지 조기 추정을 위한 무인기 영상 활용 가능성을 확인할 수 있었다.
The availability of high-resolution satellite images provides precise information without direct observation of the research target. Korea Multi-Purpose Satellite (KOMPSAT), also known as the Arirang satellite, has been developed and utilized for earth observation. The machine learning model was continuously proven as a good classifier in classifying remotely sensed images. This study aimed to compare the performance of the support vector machine (SVM) model in classifying the land cover of the Delaware River port area on high and medium-resolution images. Three optical images, which are KOMPSAT-2, KOMPSAT-3A, and Sentinel-2B, were classified into six land cover classes, including water, road, vegetation, building, vacant, and shadow. The KOMPSAT images are provided by Korea Aerospace Research Institute (KARI), and the Sentinel-2B image was provided by the European Space Agency (ESA). The training samples were manually digitized for each land cover class and considered the reference image. The predicted images were compared to the actual data to obtain the accuracy assessment using a confusion matrix analysis. In addition, the time-consuming training and classifying were recorded to evaluate the model performance. The results showed that the KOMPSAT-3A image has the highest overall accuracy and followed by KOMPSAT-2 and Sentinel-2B results. On the contrary, the model took a long time to classify the higher-resolution image compared to the lower resolution. For that reason, we can conclude that the SVM model performed better in the higher resolution image with the consequence of the longer time-consuming training and classifying data. Thus, this finding might provide consideration for related researchers when selecting satellite imagery for effective and accurate image classification.
Purpose: The definition of nodal pathologic complete response (pCR) after a neoadjuvant chemotherapy (NAC) just included the evaluation of axillary lymph node (ALN) without internal mammary lymph node. This study aimed to evaluate the feasibility of internal mammary-sentinel lymph node biopsy (IM-SLNB) in patients with breast cancer who underwent NAC. Methods: From November 2011 to 2017, 179 patients with primary breast cancer who underwent operation after NAC were included in this study. All patients received radiotracer injection with modified injection technology. IM-SLNB would be performed on patients with internal mammary sentinel lymph node (IMSLN) visualization. Results: Among the 158 patients with cN+ disease, the rate of nodal pCR was 36.1% (57/158). Among the 179 patients, the visualization rate of IMSLN was 31.8% (57/179) and was 12.3% (7/57) and 87.7% (50/57) among those with $cN_0$ and cN+ disease, respectively. Furthermore, the detection rate of IMSLN was 31.3% (56/179). The success rate of IM-SLNB was 98.2% (56/57). The IMSLN metastasis rate was 7.1% (4/56), and all of them were accompanied by ALN metastasis. The number of positive ALNs in patients with IMSLN metastasis was 3, 6, 8, and 9. The pathology nodal stage had been changed from $pN_1/pN_2$ to $pN_{3b}$. The pathology stage had been changed from IIA/IIIA to IIIC. Conclusion: Patients with visualization of IMSLN should perform IM-SLNB after NAC, especially for patients with cN+ disease, in order to complete lymph nodal staging. IM-SLNB could further improve the definition of nodal pCR and guide the internal mammary node irradiation.
SNAP(SeNtinel's Application Platform)은 유럽우주국이 개발한 공개 소프트웨어로서, SAR(Synthetic Aperture Radar)와 광학위성을 포함한 Sentinel 위성 시리즈에서 얻은 자료를 처리하는 여러개의 Toolbox로 이루어져 있다. 이 중 S1TBX(Sentinel-1 ToolBoX)는 주로 Sentinel-1A/B 영상과 간섭기법을 처리하기 위한 프로그램으로, Graph Builder와 같은 흐름도 방식의 자료처리 기법을 제공하고 DEM(Digital Elevation Model) 자동다운로드 및 모자이크 등을 포함한 편리한 기능을 탑재하고 있다. 프로그램 업데이트가 매우 활발하여, 컴퓨터 메모리가 충분하다면 InSAR(Interferometric SAR)와 DInSAR(Differential InSAR)의 수행이 원활해 최근 전세계적으로 널리 이용되고 있다. S1TBX에는 또한 기존의 타 SAR 위성 자료 처리기능을 포함하고 있으며, 최근 버전 5 이후에는 KOMPSAT-5의 처리 기능도 추가되었다. 이 연구에서는 SNAP의 S1TBX를 이용하여 KOMPSAT-5 SAR 영상의 간섭기법을 처리한 예를 보여주고 있다. 몽골 Tavan Tolgoi 노천탄광에서는 2015년도에 KOMPSAT-5로 얻어진 DEM과 2000년에 얻어진 SRTM 1sec DEM의 차이를 분석한 결과, 15년 동안 최대 130미터 깊이를 채굴하였고 쌓아놓은 광석의 높이가 70미터를 넘는 것을 확인하였다. 남극 장보고기지 인근 빙하지역에서는 타 프로그램에서는 조석과 지형 InSAR 신호가 관찰 되었으나, 궤도오차 및 DEM 오차로 SNAP으로는 처리가 불가했다. 또한 이라크 사막지역에서 여러 장의 DInSAR 영상이 만들어졌으나 시스템 오차로 보이는 줄무늬가 coherence 영상에 다수 발견되었다. StaMPS 적용을 위한 Stack은 궤도 오차 혹은 프로그램 버그로 인하여 불가했다. 최근 SNAP의 사용자가 급증하고 있고 업그레이드가 매우 빠르기 때문에 조만간 해결될 것으로 기대한다.
유방암 환자의 감시림프절 생검을 위하여 현재 방사성동위원소와 blue dye를 이용한 감시림프절 매핑(Mapping)이 선행되고 있다. 현재 모든 환자에 대하여 일괄적인 검사방법이 적용되므로 환자의 유방의 크기나 비만도와 같은 특성이 고려되지 않아 림프절의 흐름이 느린 환자의 경우, 림프절을 충분히 형성하지 못한 채 검사가 종료되는 경우가 종종 발생한다. 본 연구에서는 환자의 신체적 특성인 체질량지수와 유방의 크기에 따른 림프액의 속도차이를 관찰하였다. 이를 통해 방사성동위원소를 이용한 유방의 감시림프절 신티그래피 에서 환자의 특성을 고려한 최적의 검사시간을 도출하는데 목적을 두었다. 본 연구는 2011년 10월부터 2011년 12월까지 수술직전 유방의 감시림프절 신티그래피를 시행한 100명(여성 100명, 평균연령 $50.34{\pm}10.26$)를 대상으로 하였다. 장비는 감마카메라 Forte (Philips Medical Systems, Nederland B.V.)를 사용하였으며, 방사성의약품은 $^{99m}Tc$-Phytate 18.5 MBq, 0.5 ml를 피내주사하였다. 먼저 80명의 환자를 대상으로 기존의 5분 검사방법대신 충분히 림프절을 형성할 때까지 시간의 제한 없이 영상을 획득하였다. 이를 통해 환자의 유방크기와 체질량지수 별 그룹을 나누어 평균 검사시간을 구하였다. 이 결과를 바탕으로 검사시간을 변화시킨 변형 유방 림프신티그래피를 20명의 환자에게 시행하여 유용성을 확인하였다. 80명의 대상 중 유방의 크기에 따른 평균 검사시간은 A그룹 2.48분, B그룹 7.69분, C그룹 10.43분이었다. 80명의 대상 중 체질량지수에 따른 평균 검사시간은 저 체중 1.35분, 표준 2.56분, 과 체중 5.62분, 비만 15분이었다. 앞서 얻어진 정보를 바탕으로 각 그룹별 적절한 검사시간을 적용하여 검사를 시행하였다. 결과는 20명 중 성공평가를 받은 경우는 17회 실패평가를 받은 경우는 3회로 총 85% 성공률을 나타내었다. 유방의 크기와 체질량지수에 따른 총 검사 시간은 체질량지수가 높을수록, 유방의 크기가 클수록 증가하였으며, 얻어진 정보를 바탕으로 기존 검사방법에서 검사시간만을 변화시킨 변형 유방 림프신티그래피를 적용하였을 때 대부분의 경우 검사시간 내 림프절을 형성할 수 있었다. 이를 통해 모든 환자에게 일괄적으로 적용하던 검사방법보다 개인의 신체적 특성을 고려한 적절한 검사시간을 각각 다르게 적용하였을 때 검사에서 높은 성공률을 보임을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.