• 제목/요약/키워드: Sentinel-2A/B

검색결과 38건 처리시간 0.022초

Sentinel-2 위성영상을 이용한 DMZ 산불 피해 면적 관측 기법 연구 (The Study of DMZ Wildfire Damage Area Detection Method Using Sentinel-2 Satellite Images)

  • 이슬기;송종성;이창욱;고보균
    • 대한원격탐사학회지
    • /
    • 제38권5_1호
    • /
    • pp.545-557
    • /
    • 2022
  • 본 연구는 직접적인 접근이 어려운 demilitarized zone (DMZ)의 산불 피해 지역을 파악하기 위하여, 고해상도 위성영상 및 머신러닝 기반의 감독 분류 기법을 이용하였다. 고해상도 위성 영상은 Sentinel-2 A/B를 이용하였으며, SVM 감독분류 기법을 기반으로 토지피복도를 산출하였다. DMZ 산불 피해 지역을 분류하기 위한 최적의 조합을 찾기 위하여 SVM 내에 다양한 커널과 밴드 조합에 따른 감독 분류를 진행하고 오차 행렬을 통해 정확도를 평가하였다. 또한, 2020년, 2021년은 위성영상 자료 기반의 산불 탐지 결과와 산불 연보의 피해 지역 면적 간의 비교를 통한 검증을 수행하였다. 이후, 현재 피해 면적 자료가 없는 2022년의 산불 피해 지역을 탐지함으로써 신뢰할 만한 수준의 결과를 신속적으로 파악하고자 하였다.

Sentinel-1 SAR와 지표상태인자를 활용한 토양의 동결 융해 상태 분석 연구 (A Study on Freeze-Thaw Conditions Analysis of Soil Using Sentinel-1 SAR and Surface State Factor)

  • 이용관 ;정지훈 ;장원진 ;김진욱;김성준
    • 대한원격탐사학회지
    • /
    • 제39권5_1호
    • /
    • pp.609-620
    • /
    • 2023
  • 본 연구에서는 Sentienl-1 C-band synthetic aperture radar (SAR) 자료를 활용해 토양의 동결-융해 상태 구분을 위한 지표상태인자(surface state factor, SSF)를 산정하고, 기온, 초상온도, 지중온도 관측 자료와 비교를 통해 SSF 구분의 정확도를 분석하였다. 분석을 위한 SAR 자료는 우리나라 중부지방에 대해 2017년부터 2020년까지 4년 동안 관측된 Sentinel-1B descending node 116장을 구축하였으며, 동 기간의 농촌진흥청 토양수분 관측 지점 23곳에 대한 시 단위 기온, 초상온도, 10 cm 지중온도 자료를 구축하고 Sentienl-1B 영상의 촬영시각과 인접한 06:00 am 자료를 활용해 분석하였다. 전체 관측소에 대한 평균 정확도와 F1-score는 기온이 각각 0.63, 0.47, 초상온도가 0.63, 0.48, 지중온도가 0.57, 0.21로 나타났다. 겨울철(12~2월) 자료에 대한 평균 정확도와 F1-score는 기온이 각각 0.66, 0.76, 초상온도가 0.67, 0.76, 지중온도가 0.47, 0.44로 나타났다. 겨울철 자료의 정확도 상승은그외 시기에서 발생하는 오류가 포함되지 않기 때문인 것으로 보인다.

광학위성영상의 해상도에 따른 논지역의 정규식생지수 비교 (Comparison of NDVI in Rice Paddy according to the Resolution of Optical Satellite Images)

  • 은정;김선화;민지은
    • 대한원격탐사학회지
    • /
    • 제39권6_1호
    • /
    • pp.1321-1330
    • /
    • 2023
  • 정규식생지수는 농업분야에 가장 많이 사용된 원격탐사 자료로, 현재 대부분의 광학위성에서 제공되고 있다. 특히 고해상도 광학위성영상이 제공되면서 농업 활용 분야에 따른 최적의 광학위성영상의 선택이 매우 중요한 이슈가 되었다. 본 연구에서는 국내 논지역의 정규식생지수 모니터링 시 가장 최적의 광학위성영상을 정의하고 이를 위해 필요한 해상도 관련 요구조건을 도출하고자 한다. 이를 위해 전 세계적으로 많이 사용되는 MOD13, Landsat-8, Sentinel-2A/B, PlanetScope 위성의 정규식생지수영상을 대상으로 국내 당진 논지역의 공간분포 및 2019년부터 2022년까지 시계열 패턴을 비교, 분석하였다. 각 자료는 3-250 m의 공간해상도와 다양한 주기해상도로 제공되며, 정규식생지수를 산출할 때 사용되는 분광밴드의 영역도 약간의 차이가 있다. 분석 결과 Landsat-8은 가장 낮은 정규식생지수 값을 나타내며 공간적으로 변이도 매우 낮았다. 이에 비해 MOD13 정규식생지수 영상은 PlanetScope 자료와 비슷한 공간분포 및 시계열 패턴을 나타났으나 낮은 공간해상도로 인해 논 주변지역의 영향을 받았다. Sentinel-2A/B는 넓은 근적외선밴드 영역으로 인해 상대적으로 약간 낮은 정규식생지수 값을 나타내었으며, 특히 생육 초기시기에 그 특징이 두드러졌다. PlanetScope의 정규식생지수가 상세한 공간적 변이 및 안정적인 시계열 패턴을 제공하나 높은 구매가격을 고려하면 공간적으로 균일한 논지역보다는 밭지역에서 그 활용성이 높을 것으로 사료된다. 이에 따라 국내 논지역에 대해서는 250 m급 MOD13 정규식생지수나 10 m급 Sentinel-2A/B가 가장 효율적일 것으로 사료되나 작물의 개체에 대한 상세 물리량 추정을 위해서는 고해상도 위성영상이 활용될 수 있다.

Sentinel-1 A/B 위성 SAR 자료와 딥러닝 모델을 이용한 여름철 북극해 해빙 분류 연구 (A Study on Classifying Sea Ice of the Summer Arctic Ocean Using Sentinel-1 A/B SAR Data and Deep Learning Models)

  • 전현균;김준우;수레시 크리쉬난;김덕진
    • 대한원격탐사학회지
    • /
    • 제35권6_1호
    • /
    • pp.999-1009
    • /
    • 2019
  • 북극항로의 개척 가능성과 정확한 기후 예측 모델의 필요성에 의해 북극해 고해상도 해빙 지도의 중요성이 증가하고 있다. 그러나 기존의 북극 해빙 지도는 제작에 사용된 위성 영상 취득 센서의 특성에 따른 데이터의 취득과 공간해상도 등에서 그 활용도가 제한된다. 본 연구에서는 Sentinel-1 A/B SAR 위성자료로부터 고해상도 해빙 지도를 생성하기 위한 딥러닝 기반의 해빙 분류 알고리즘을 연구하였다. 북극해 Ice Chart를 기반으로 전문가 판독에 의해 Open Water, First Year Ice, Multi Year Ice의 세 클래스로 구성된 훈련자료를 구축하였으며, Convolutional Neural Network 기반의 두 가지 딥러닝 모델(Simple CNN, Resnet50)과 입사각 및 thermal noise가 보정된 HV 밴드를 포함하는 다섯 가지 입력 밴드 조합을 이용하여 총 10가지 케이스의 해빙 분류를 실시하였다. 이 케이스들에 대하여 Ground Truth Point를 사용하여 정확도를 비교하고, 가장 높은 정확도가 나온 케이스에 대해 confusion matrix 및 Cohen의 kappa 분석을 실시하였다. 또한 전통적으로 분류를 위해 많이 활용되어 온 Maximum Likelihood Classifier 기법을 이용한 분류결과에 대해서도 같은 비교를 하였다. 그 결과 Convolution 층 2개, Max Pooling 층 2개를 가진 구조의 Convolutional Neural Network에 [HV, 입사각] 밴드를 넣은 딥러닝 알고리즘의 분류 결과가 96.66%의 가장 높은 분류 정확도를 보였으며, Cohen의 kappa 계수는 0.9499로 나타나 딥러닝에 의한 해빙 분류는 비교적 높은 분류 결과를 보였다. 또한 모든 딥러닝 케이스는 Maximum Likelihood Classifier 기법에 비해 높은 분류 정확도를 보였다.

Performance of Support Vector Machine for Classifying Land Cover in Optical Satellite Images: A Case Study in Delaware River Port Area

  • Ramayanti, Suci;Kim, Bong Chan;Park, Sungjae;Lee, Chang-Wook
    • 대한원격탐사학회지
    • /
    • 제38권6_4호
    • /
    • pp.1911-1923
    • /
    • 2022
  • The availability of high-resolution satellite images provides precise information without direct observation of the research target. Korea Multi-Purpose Satellite (KOMPSAT), also known as the Arirang satellite, has been developed and utilized for earth observation. The machine learning model was continuously proven as a good classifier in classifying remotely sensed images. This study aimed to compare the performance of the support vector machine (SVM) model in classifying the land cover of the Delaware River port area on high and medium-resolution images. Three optical images, which are KOMPSAT-2, KOMPSAT-3A, and Sentinel-2B, were classified into six land cover classes, including water, road, vegetation, building, vacant, and shadow. The KOMPSAT images are provided by Korea Aerospace Research Institute (KARI), and the Sentinel-2B image was provided by the European Space Agency (ESA). The training samples were manually digitized for each land cover class and considered the reference image. The predicted images were compared to the actual data to obtain the accuracy assessment using a confusion matrix analysis. In addition, the time-consuming training and classifying were recorded to evaluate the model performance. The results showed that the KOMPSAT-3A image has the highest overall accuracy and followed by KOMPSAT-2 and Sentinel-2B results. On the contrary, the model took a long time to classify the higher-resolution image compared to the lower resolution. For that reason, we can conclude that the SVM model performed better in the higher resolution image with the consequence of the longer time-consuming training and classifying data. Thus, this finding might provide consideration for related researchers when selecting satellite imagery for effective and accurate image classification.

Sentinel-2B 위성 영상을 활용한 산불 피해지역 식생 회복률에 관한 연구 (A Study on the Recovery Rate of Vegetation in Forest Fire Damage Areas Using Sentinel-2B Satellite Images)

  • 천금성;천광일;박병배
    • 환경영향평가
    • /
    • 제32권6호
    • /
    • pp.463-472
    • /
    • 2023
  • 산불에 대한 피해액과 피해 면적은 전 세계적으로 커지고 있지만 피해 후 복원 방법에 따른 효과연구는 부족한 현실이다. 본 연구는 Sentinel-2B 위성 영상과 임상도를 활용하여 산불 피해 면적을 산출하고, 임상에 따른 산불 피해 강도를 분석하였다. 또한, 다양한 파장대를 활용하여 식생지수를 계산하고, 이를 토대로 복원 방법에 따른 식생 회복력을 -1.0에서 1.0 범위 내에서 정량적으로 분석하였다. 그 결과 침엽수림 비율이 높은 지역에서 높은 강도의 산불 피해가 발생하였고, 상대적으로 혼효림과 활엽수림의 비율이 높은 지역에서 낮은 강도의 산불 피해 경향을 보였다. 산불 발생 이후 인공림과 천연림에서의 식생 회복률을 분석한 결과, 인공림은 산불 발생 이전 대비 약 92%, 천연림은 약 101% 식생을 회복하였으며 인공림보다 천연림에서 식생 회복력이 우수한 것을 확인할 수 있었다. 본 연구는 임상에 따른 산불 피해 강도를 분석하고 복원 방법에 따른 식생 회복력을 평가함으로써 산불 피해를 줄이기 위한 수목 선정에 기초자료를 제공하고 복원방법에 따른 식생회복력을 비교하는데 의의가 있다.

선행 강우를 고려한 Sentinel-1 SAR 위성영상과 다중선형회귀모형을 활용한 토양수분 산정 (Estimation of Soil Moisture Using Sentinel-1 SAR Images and Multiple Linear Regression Model Considering Antecedent Precipitations)

  • 정지훈;손무빈;이용관;김성준
    • 대한원격탐사학회지
    • /
    • 제37권3호
    • /
    • pp.515-530
    • /
    • 2021
  • 본 연구에서는 Sentinel-1 C-band SAR(Synthetic Aperture Radar) 위성영상을 기반으로 다중선형회귀모형을 활용하여 금강 유역 상류에 위치한 용담댐 유역의 토양수분을 산정하였다. 10 m 공간 해상도의 Sentinel-1A/B SAR 영상은 6일 간격으로 2015년부터 2019년까지 5년 동안 구축하였고, SNAP(SentiNel Application Platform)을 사용하여 기하 보정, 방사 보정 및 잡음(Noise) 보정을 수행하고 VV 및 VH 편파 후방산란계수로 변환하였다. 토양수분 산정 모형의 검증자료로 TDR로 측정된 6개 지점의 실측 토양수분 자료를 구축하였으며, 수문학적 개념인 선행 강우를 고려하기 위해 동지점에 대한 강수량 자료를 구축하였다. 다중선형회귀모형은 전체 기간 및 계절별로 나누어 모의하였으며, 독립변수의 증감에 따른 상관성 분석을 진행하였다. 산정된 토양수분은 결정계수(R2)와 평균제곱근오차(RMSE)를 활용하여 검증하였다. 초지 지역에서 후방산란계수만을 이용한 토양 수분 산정 결과 R2가 0.13, RMSE가 4.83%으로 나타났으며 선행강우를 5일까지 사용했을 경우 R2가 0.37, RMSE가 4.11%로 상관성이 상승하는 모습을 보였다. 이 때, 토양수분의 계절별 변동성과 감소 패턴의 반영을 위해 무강우누적일수의 적용과 계절별 회귀식을 작성한 결과 R2가 0.69, RMSE가 2.88%로 상관성이 크게 상승하였다. SAR 기반 토양수분 추정 시 선행강우 및 무강우누적일수의 활용이 효과적이었다.

유방암의 감시림프절 검사에서 유방크기와 체질량지수에 따른 검사시간 변화 (The Variation of Scan Time According to Patient's Breast Size and Body Mass Index in Breast Sentinel lymphangiography)

  • 이다영;남궁혁;조석원;오신현;임한상;김재삼;이창호;박훈희
    • 핵의학기술
    • /
    • 제16권2호
    • /
    • pp.62-67
    • /
    • 2012
  • 유방암 환자의 감시림프절 생검을 위하여 현재 방사성동위원소와 blue dye를 이용한 감시림프절 매핑(Mapping)이 선행되고 있다. 현재 모든 환자에 대하여 일괄적인 검사방법이 적용되므로 환자의 유방의 크기나 비만도와 같은 특성이 고려되지 않아 림프절의 흐름이 느린 환자의 경우, 림프절을 충분히 형성하지 못한 채 검사가 종료되는 경우가 종종 발생한다. 본 연구에서는 환자의 신체적 특성인 체질량지수와 유방의 크기에 따른 림프액의 속도차이를 관찰하였다. 이를 통해 방사성동위원소를 이용한 유방의 감시림프절 신티그래피 에서 환자의 특성을 고려한 최적의 검사시간을 도출하는데 목적을 두었다. 본 연구는 2011년 10월부터 2011년 12월까지 수술직전 유방의 감시림프절 신티그래피를 시행한 100명(여성 100명, 평균연령 $50.34{\pm}10.26$)를 대상으로 하였다. 장비는 감마카메라 Forte (Philips Medical Systems, Nederland B.V.)를 사용하였으며, 방사성의약품은 $^{99m}Tc$-Phytate 18.5 MBq, 0.5 ml를 피내주사하였다. 먼저 80명의 환자를 대상으로 기존의 5분 검사방법대신 충분히 림프절을 형성할 때까지 시간의 제한 없이 영상을 획득하였다. 이를 통해 환자의 유방크기와 체질량지수 별 그룹을 나누어 평균 검사시간을 구하였다. 이 결과를 바탕으로 검사시간을 변화시킨 변형 유방 림프신티그래피를 20명의 환자에게 시행하여 유용성을 확인하였다. 80명의 대상 중 유방의 크기에 따른 평균 검사시간은 A그룹 2.48분, B그룹 7.69분, C그룹 10.43분이었다. 80명의 대상 중 체질량지수에 따른 평균 검사시간은 저 체중 1.35분, 표준 2.56분, 과 체중 5.62분, 비만 15분이었다. 앞서 얻어진 정보를 바탕으로 각 그룹별 적절한 검사시간을 적용하여 검사를 시행하였다. 결과는 20명 중 성공평가를 받은 경우는 17회 실패평가를 받은 경우는 3회로 총 85% 성공률을 나타내었다. 유방의 크기와 체질량지수에 따른 총 검사 시간은 체질량지수가 높을수록, 유방의 크기가 클수록 증가하였으며, 얻어진 정보를 바탕으로 기존 검사방법에서 검사시간만을 변화시킨 변형 유방 림프신티그래피를 적용하였을 때 대부분의 경우 검사시간 내 림프절을 형성할 수 있었다. 이를 통해 모든 환자에게 일괄적으로 적용하던 검사방법보다 개인의 신체적 특성을 고려한 적절한 검사시간을 각각 다르게 적용하였을 때 검사에서 높은 성공률을 보임을 알 수 있었다.

  • PDF

고해상도 광학위성을 이용한 해상 유출유 면적 산출: 심포니호 기름유출 사고 사례 (Calculation Method of Oil Slick Area on Sea Surface Using High-resolution Satellite Imagery: M/V Symphony Oil Spill Accident)

  • 김태호;신혜경;장소영;유정미;김평중;양찬수
    • 대한원격탐사학회지
    • /
    • 제37권6_1호
    • /
    • pp.1773-1784
    • /
    • 2021
  • 해상에서 발생하는 유출유 사고는 피해 최소화를 위해서 신속한 현황 정보 수집이 필수적이며, 인공위성은 해상에 유출된 기름을 탐지하는데 매우 유용한 도구이다. 최근에 활용 가능한 인공위성 수가 급속하게 증가함에 따라, 사고발생 이후 준실시간 수준의 해상 유출유 현황 정보 생성이 가능해졌다. 본 연구에서는 2021년 4월 27일 중국 칭다오항 앞바다에서 발생한 심포니호 기름 유출사고를 대상으로 다종 인공위성 영상을 이용하여 기름 유출 면적을 산출하였다. 특히, 2 m 공간해상도 정보 획득이 가능한 고해상도 상용 인공위성 영상을 이용하여 기름유출 면적 산출의 정확도 향상 가능성을 평가하였다. 4월 27일부터 5월 13일까지 Sentinel-1, Sentinel-2, LANDSAT-8, GEO-KOMPSAT-2B (GOCI-II) 및 Skysat 위성영상을 수집하였으며, 기상조건을 고려하여 탐지 가능한 5장의 영상을 대상으로 유출유 탐지를 수행하였다. 유출된 기름은 사고발생 지점으로부터 남서-북동 방향으로 확산하면서, 외해에서 육지 쪽으로 이동하였다. 이러한 이동 경향은 Skysat 영상에서 확인이 가능하였으며, 사고 위치로부터 기름 입자의 이동예측을 수행한 결과와 유사하게 나타났다. 고해상도 인공위성 영상 탐지결과 및 이동예측 결과를 이용하여, 5월 1일 Sentinel-1A 영상에서 사고지점 북쪽 해역의 패치는 유사 기름으로 추정하였다. 이러한 오탐지를 제거한 결과 유출유 면적은 사고발생 후 선형적으로 증가하는 경향을 나타냈다. 본 연구 결과는 향후 고해상도 광학위성의 사용이 유출유의 분포 면적을 더욱 정확하게 산출함을 보여주었으며, 해상유출유 대응 과정에서 효율적인 방제계획 수립에 기여할 것으로 판단된다.

Internal Mammary Sentinel Lymph Node Biopsy after Neoadjuvant Chemotherapy in Breast Cancer

  • Bi, Zhao;Chen, Peng;Liu, Jingjing;Liu, Yanbing;Qiu, Pengfei;Yang, Qifeng;Zheng, Weizhen;Wang, Yongsheng
    • Journal of Breast Cancer
    • /
    • 제21권4호
    • /
    • pp.442-446
    • /
    • 2018
  • Purpose: The definition of nodal pathologic complete response (pCR) after a neoadjuvant chemotherapy (NAC) just included the evaluation of axillary lymph node (ALN) without internal mammary lymph node. This study aimed to evaluate the feasibility of internal mammary-sentinel lymph node biopsy (IM-SLNB) in patients with breast cancer who underwent NAC. Methods: From November 2011 to 2017, 179 patients with primary breast cancer who underwent operation after NAC were included in this study. All patients received radiotracer injection with modified injection technology. IM-SLNB would be performed on patients with internal mammary sentinel lymph node (IMSLN) visualization. Results: Among the 158 patients with cN+ disease, the rate of nodal pCR was 36.1% (57/158). Among the 179 patients, the visualization rate of IMSLN was 31.8% (57/179) and was 12.3% (7/57) and 87.7% (50/57) among those with $cN_0$ and cN+ disease, respectively. Furthermore, the detection rate of IMSLN was 31.3% (56/179). The success rate of IM-SLNB was 98.2% (56/57). The IMSLN metastasis rate was 7.1% (4/56), and all of them were accompanied by ALN metastasis. The number of positive ALNs in patients with IMSLN metastasis was 3, 6, 8, and 9. The pathology nodal stage had been changed from $pN_1/pN_2$ to $pN_{3b}$. The pathology stage had been changed from IIA/IIIA to IIIC. Conclusion: Patients with visualization of IMSLN should perform IM-SLNB after NAC, especially for patients with cN+ disease, in order to complete lymph nodal staging. IM-SLNB could further improve the definition of nodal pCR and guide the internal mammary node irradiation.