• 제목/요약/키워드: Sentinel-2A/B

검색결과 38건 처리시간 0.125초

논과 고랭지 배추밭 대상 Sentinel-2A/B 정규식생지수 월 합성영상의 구름 제거 효과 분석 (Analysis of the Cloud Removal Effect of Sentinel-2A/B NDVI Monthly Composite Images for Rice Paddy and High-altitude Cabbage Fields)

  • 은정;김선화;김태호
    • 대한원격탐사학회지
    • /
    • 제37권6_1호
    • /
    • pp.1545-1557
    • /
    • 2021
  • 농작물은 그 종과 생육상태에 따라 민감한 분광특성을 나타내며, 특히 여름철에 집중적으로 관측이 필요하나 장마로 인해 광학위성의 활용이 어렵다. 이 문제를 해결하기 위해 CC-MNC(Constrained Cloud-Maximum NDVI Composite) 기법이 개발되었으며, 이 기법을 통해 구름의 영향이 최소화된 일정 주기의 대표 합성영상이 생성된다. 본 연구에서도 이 기법을 이용하여, 2019년부터 2021년까지 논과 고랭지 배추밭을 대상으로 Sentinel-2A/B NDVI 월합성영상을 제작하였다. 다른 해보다 200 mm 많은 강수량을 보이는 2020년 8월에는 16일 주기 MODIS NDVI합성영상에서도 구름의 영향이 크게 나타났다. 이 시기를 제외하고 CC-MNC 기법은 평균적으로 원영상의 45.4%의 구름 비율을 14.9%로 줄일 수 있었다. 논의 경우 Sentinel-2A/B와 MODIS NDVI 값이 큰 차이가 나지 않았으며, 5일의 주기로도 벼의 생육 주기를 잘 모니터링할 수 있었다. 고랭지 배추밭의 경우, Sentinel-2A/B에서는 고랭지 배추의 짧은 생육 주기가 잘 나타났지만, MODIS는 공간해상도의 한계를 보였다. 이와 함께 CC-MNC 기법은 수확 시기에 구름 화소가 합성에 사용되는 현상이 보이기도 하였으며, 국내지역에 맞게 VZA 임계치의 조정이 필요하다는 시사점이 도출되었다.

Landsat 8/9 및 Sentinel-2 A/B를 이용한 울진 산불 피해 탐지: 다양한 지수를 기반으로 다시기 분석 (Forest Burned Area Detection Using Landsat 8/9 and Sentinel-2 A/B Imagery with Various Indices: A Case Study of Uljin)

  • 김병철;이경일;박선영;임정호
    • 대한원격탐사학회지
    • /
    • 제38권5_2호
    • /
    • pp.765-779
    • /
    • 2022
  • 본 연구에서는 Landsat 8/9 OLI와 Sentinel-2 MSI 위성 영상을 활용한 다시기 영상 데이터를 이용하여 다양한 분광 지수를 기반으로 국내 산불 피해 면적 탐지 정확도를 분석하였다. 2022년 3월 경상북도 울진에서 발생하였던 산불을 대상으로 Difference Normalized Burn Ratio (dNBR), Relative Difference Normalized Burn Ratio (RdNBR), Burned Area Index (BAI) 등의 지수를 활용하여 산불피해 면적 탐지에 활용하였다. 비교적 높은 공간 해상도를 가진 Sentinel-2 영상을 기반으로 참조 자료를 제작하였다. 총 6개의 지수 산출물을 기반으로 Sentinel-2, Landsat 8/9으로 총 4개 위성에 대해 산불 피해 정확도를 각각 분석하였다. Landsat 8/9과 Sentinel-2는 각각 16일, 10일 주기로 영상을 제공하고 있지만 구름으로 인해 영상 취득에 어려움이 많은 편이며, 우리나라는 4월부터 식생의 생장이 시작되어 봄철 산불 피해 분석 시 산불발생 전후 영상을 활용하는 경우 식생의 생장으로 인한 변화가 커서 정확도 높은 탐지에 어려움이 있다. 따라서, 본 연구는 2월에서 5월까지의 다시기 Landsat 8/9과 Sentinel-2 영상 중 같은 날짜를 기반의 영상을 서로 사용하여 시간해상도의 한계를 극복하고 탐지 정확도가 상대적으로 높은 지수를 비교 분석했다. 본 연구 결과는 한국형 산불피해 탐지 지수/모델 개발을 위한 입력 자료 등으로 활용되어 최적화된 산불 지수를 기반으로 정확도 높은 산불 피해 면적 탐지에 활용될 수 있을 것으로 기대된다.

Sentinel-1A/B SAR와 토양수분자료동화기법을 이용한 고해상도 토양수분 산정 (Estimation of High-Resolution Soil Moisture Using Sentinel-1A/B SAR and Soil Moisture Data Assimilation Scheme)

  • 김상우;이태화;천범석;정영훈;신용철
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.274-274
    • /
    • 2021
  • 토양수분은 가뭄, 홍수, 산불 및 산사태 등 자연재해 발생에 직간접적으로 영향을 미치기 때문에, 시·공간적으로 연속적인 토양수분 관측이 필요하다. 과거에는 TDR (Time Domain Reflectometry) 관측 장비를 설치하여 토양수분의 변화를 관측하였으나, 이러한 지점관측의 경우 하나의 관측지점에서 토양수분을 관측하기 때문에 공간적인 토양수분 변화를 나타내지 못한다. 최근 이러한 문제를 해결하기 위하여 인공위성 이미지 자료를 이용한 토양수분 산정에 관한 연구가 활발히 수행되고 있다. 그러나 SMOS (Soil Moisture and Ocean Salinity), SMAP (Soil Moisture Active Passive)와 같은 다양한 위성에서 관측된 토양수분은 낮은 공간해상도로 인한 불확실성이 커지는 단점이 있다. 최근 이러한 한계를 극복하기 위하여 광학위성영상과 달리 날씨의 영향을 받지 않으며 고해상도 이미지자료를 제공하는 Sentinel-1A/B 위성을 활용하여 토양수분을 관측하는 연구가 진행되고 있다. Sentinel-1은 10m의 높은 공간해상도를 제공하지만, 1~2주 주기로 영상취득이 가능하기 때문에 재방문시기와 같은 시간해상도 문제가 발생한다. 따라서 본 연구에서는 Sentinel-1A/B SAR 기반 후방산란계수와 농촌진흥청에서 제공하는 TDR 기반 토양수분 실측값을 이용하여 우리나라 토양수분 공간분포를 산정하였다. 산정된 Sentinel-1A/B 기반 토양수분과 토양수분자료동화기법을 연계하여 토양의 수리학적 매개변수를 추출하였으며, 추출된 매개변수와 기상자료를 이용하여 장기간(2001~2018) 일별 토양수분 공간분포를 산정하였다.

  • PDF

Google Earth Engine과 Sentinel-2 위성자료를 이용한 러시아 노릴스크 지역의 기름 유출 모니터링 (Oil Spill Monitoring in Norilsk, Russia Using Google Earth Engine and Sentinel-2 Data)

  • 김민주;현창욱
    • 대한원격탐사학회지
    • /
    • 제39권3호
    • /
    • pp.311-323
    • /
    • 2023
  • 기름 유출 사고는 발생 시 환경과 관련된 다양한 문제들을 야기하므로 신속하게 유출유의 면적과 위치 변화를 파악하는 것이 중요하다. 광학 위성자료를 활용한 기름 유출 탐지의 경우 다양한 위성탑재 센서를 통해 유출유에 대한 정보 수집 후 이를 이용하여 광범위한 기름 유출 범위를 모니터링할 수 있다. 선행 연구에서는 파장별 기름의 반사도를 분석한 후 특정 파장대의 밴드를 이용한 oil spill index가 개발 및 적용되었다. 기름 유출 모니터링을 위해 유출 전후 여러 시기의 위성자료를 분석할 경우 다량의 데이터로 인해 많은 시간과 컴퓨팅 자원이 소비된다. 웹 브라우저를 통해 대량의 위성자료 분석이 가능한 Google Earth Engine을 활용할 경우 효율적으로 기름 유출 탐지가 가능하다. 본 연구에서는 Sentinel-2 MultiSpectral Instrument 위성자료와 클라우드 기반의 위성자료 분석 플랫폼인 Google Earth Engine을 이용하여 기존에 제안된 네 종류의 oil spill index의 다양한 피복 환경에서의 활용성 평가를 수행하였다. 지표 피복별 index 값의 비교를 통해 기름 유출 영역이 타 피복과 잘 구분되는지에 대한 분리도를 평가하고 기름 유출 면적을 산정하였다. 본 연구 결과를 통해 Google Earth Engine이 기름 유출 광역 모니터링에 효율적으로 활용 가능하다는 것을 확인하였고, 복잡한 지표 피복이 분포하는 다른 지역에 기름 유출 사고 발생 시 우수한 성능으로 평가된 oil spill index B ((B3+B4)/B2)와 C (R: B3/B2, G: (B3+B4)/B2, B: (B6+B7)/B5)의 적용은 효과적인 기름 유출 모니터링에 기여할 것으로 판단된다.

Sentinel-2A/B 위성영상의 주기합성을 위한 구름 및 구름 그림자 탐지 기법 개발 (Development of Cloud and Shadow Detection Algorithm for Periodic Composite of Sentinel-2A/B Satellite Images)

  • 김선화;은정
    • 대한원격탐사학회지
    • /
    • 제37권5_1호
    • /
    • pp.989-998
    • /
    • 2021
  • 구름의 영향을 크게 받는 광학위성영상의 활용에 있어 일정 주기 합성은 구름의 영향을 최소화할 수 있는 유용한 방법이다. 최근 주기 합성 시 구름과 구름 그림자 정보가 직접 입력되어 일정 주기 시 두 인자의 영향을 가장 덜 받는 최적의 화소를 선택하는 기법이 제시되었다. 최적의 합성 결과를 도출하기 위해서는 구름과 구름 그림자의 정확한 추출이 필수적이다. 또한 농작물과 같이 분광정보가 중요한 대상의 경우 주기 합성 시 분광정보의 손실이 최소화되어야 한다. 본 연구에서는 구름과 구름 그림자의 높은 탐지정확도를 유지하면서 분광정보의 손실이 적은 탐지 기법을 도출하기 위해, 강원도 고랭지 배추밭을 대상으로 두 분광척도(Haze Optimized Tranformation; HOT, MeanVis)를 이용한 방법과 Sentinel-2A/B에서 제공되는 구름 정보를 비교 분석하였다. 2019년~2021년까지 자료를 분석한 결과 Sentinel-2A/B위성의 구름 정보는 F1값이 0.91인 탐지 정확도를 보이나, 밝은 인공물이 구름으로 오탐지되었다. 이에 비해 HOT에 임계치(=0.05)를 적용해 획득한 구름 탐지 결과는 상대적으로 낮은 탐지 정확도(F1=0.72)를 보였으나, 오탐지가 적어 분광정보의 손실을 최소화하였다. 구름 그림자의 경우, Sentinel-2A/B 부가 레이어에서는 최소한의 그림자만이 탐지된 결과를 볼 수 있었으나, MeanVis에 임계치(= 0.015)를 적용했을 시 지형적으로 발생한 그림자와 구별 가능한 구름 그림자만을 탐지할 수 있었다. 분광척도 기반 구름 및 그림자 정보를 입력해 안정된 월별 합성된 식생지수결과를 획득하였으며, 향후 Sentinel-2A/B의 높은 정확도의 구름 정보를 주기 합성에 입력해 비교할 예정이다.

Sentinel-2 MSI를 활용한 남양 간척담수호의 조류발생 특성 분석 (Analysis of Algal Bloom Occurrence Characteristics Namyang Lake using Sentinel-2 MSI)

  • 장원진;김진욱;이지완;박용은;김성준
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.56-56
    • /
    • 2023
  • 남양호는 농업용수 공급을 위해 건설된 하구 담수호로 과도한 영양물질 축적으로 인해 매년 여름 녹조류가 번성한다. 따라서 본 연구에서는 조류발생 특성을 분석하고자 식물성 플랑크톤 및 관련 분해 산물에 의해 고유 광학특성을 가지고 있는 Chlorophyll-a(Chl-a)의 추정을 통한 녹조 발생을 파악하고자 Sentinel-2 Multi Spectral Image(MSI)의 원격 반사율 광학 스펙트럼을 사용하였다. Chl-a 추정알고리즘 개발을 위하여 Sentinel-2 A, B의 교차 방문주기인 5일 간격에 맞추어 현장수질자료(2022년: 27회 2023년: 27회)를 측정하였다. Chl-a 농도는 EXO-YSI를이용하여 측정하였으며 해당기간동안 9.4 ~ 127.1 mg/L의 범위를 보였으며, Sentine-2 자료는 A, B자료에서 B1(443 nm) ~ B8A(865 nm)파장의 값을 기상조건(구름, 안개, 강수)을 고려하여 현장수질측정 위치에서 반사도를 추출하였다. 입력자료는 대기 및 방사영향을 고려해 반사도 간의 비율자료와 선행연구에서 활용된 반사도를 활용하였으며 알고리즘은 다중선형회귀분석(Multi Linear Regression Model)과 Random Forest를 활용하였다. MLR의 경우 결정계수(R2)가 학습 및 검증에서 각각 0.68, 0.59의 성능을 보였으며, RF의 경우 각각 0.94, 0.85의 성능을 보였다. 해당알고리즘으로 생성된 Chl-a 시공간농도 자료는 담수호내 조류발생 특성을 분석하고 효율적 조류관리 및 대처에 활용될 것으로 판단된다.

  • PDF

Sentinel-1 & -2 위성영상 기반 식생지수와 Water Cloud Model을 활용한 토양수분 산정 (Soil moisture estimation using the water cloud model and Sentinel-1 & -2 satellite image-based vegetation indices)

  • 정지훈;이용관;김진욱;장원진;김성준
    • 한국수자원학회논문집
    • /
    • 제56권3호
    • /
    • pp.211-224
    • /
    • 2023
  • 본 연구에서는 합성개구레이더(Synthetic Aperture Radar, SAR) 기반의 식생을 고려하는 후방산란모델 Water Cloud Model (WCM)을 활용한 토양수분 산정 연구를 수행하였다. 금강 상류의 용담댐유역을 포함한 40 × 50 km2 영역의 Sentinel-1 SAR 및 Sentinel-2 MSI (Multi-Spectral Instrument) 영상을 수집하여 연구에 활용하였다. WCM의 식생변수로는 Sentinel-1 기반의 식생지수 RVI (Radar Vegetation Index), 탈분극비(Depolarization Rario, DR)와 Sentinel-2 기반의 NDVI (Normalized Difference Vegetation Index)를 활용하였다. WCM의 정모델링(forward modeling)은 토양수분과 후방산란계수의 특성이 유사한 3개 Group으로 나누어 수행하였다. 토양수분과 후방산란계수의 선형적인 관계가 명확할수록 Group의 모의 성능이 더 높게 나타났으며, 식생지수 별로는 NDVI, RVI, DR 순으로 정확도가 높았다. 토양수분을 모의하기 위해 모의된 후방산란계수를 반전(inversion)하였으며, 모의 성능은 정모델링 결과와 비례하였다. WCM 모의의 오류는 실측 후방산란계수 기준 약 -12dB를 기점으로 증가하는 양상을 보였다.

선행강우를 고려한 Sentinel-1 SAR 위성영상과 ANN을 활용한 공간 토양수분 산정 (Estimation of spatial soil moisture using Sentinel-1 SAR images and ANN considering antecedent precipitation)

  • 정지훈;이용관;손무빈;한대영;김성준
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.117-117
    • /
    • 2021
  • 본 연구에서는 Sentinel-1A/B C-band SAR(Synthetic Aperture Radar) 위성영상을 기반으로 인공신경망(Artificial Neural Network, ANN) 모형을 활용해 금강 유역 상류 40×50 km2 면적에 대한 토양수분을 산정하였다. 10 m 공간 해상도의 Sentinel-1A/B SAR 영상은 8일 간격으로 2015년부터 2019년까지 5년 동안 구축하였고, SNAP(SentiNel Application Platform)을 통해 기하 보정, 방사 보정 및 잡음(Noise) 보정을 수행하고 VV 및 VH 편파 후방산란계수로 변환하였다. ANN 모형 검증자료로 TDR(Time Domain Reflectometry)로 측정된 9개 지점의 실측 토양수분 자료를 구축하였으며, 수문학적 개념인 선행강우를 고려하기 위해 동지점에 대한 강수량 자료를 구축하였다. ANN은 각 지점에 해당하는 토양 속성별로 모델링하고, 전체 기간 및 계절별로 나누어 모의하였으며, 전체 자료의 60%와 40%를 각각 훈련 및 테스트 데이터로 사용하였다. 산정된 토양수분은 상관계수(Correlation Coefficient, R)와 평균제곱근오차(Root Mean Square Error, RMSE)를 활용하여 검증을 수행할 예정이다.

  • PDF

Alsat-2B/Sentinel-2 Imagery Classification Using the Hybrid Pigeon Inspired Optimization Algorithm

  • Arezki, Dounia;Fizazi, Hadria
    • Journal of Information Processing Systems
    • /
    • 제17권4호
    • /
    • pp.690-706
    • /
    • 2021
  • Classification is a substantial operation in data mining, and each element is distributed taking into account its feature values in the corresponding class. Metaheuristics have been widely used in attempts to solve satellite image classification problems. This article proposes a hybrid approach, the flower pigeons-inspired optimization algorithm (FPIO), and the local search method of the flower pollination algorithm is integrated into the pigeon-inspired algorithm. The efficiency and power of the proposed FPIO approach are displayed with a series of images, supported by computational results that demonstrate the cogency of the proposed classification method on satellite imagery. For this work, the Davies-Bouldin Index is used as an objective function. FPIO is applied to different types of images (synthetic, Alsat-2B, and Sentinel-2). Moreover, a comparative experiment between FPIO and the genetic algorithm genetic algorithm is conducted. Experimental results showed that GA outperformed FPIO in matters of time computing. However, FPIO provided better quality results with less confusion. The overall experimental results demonstrate that the proposed approach is an efficient method for satellite imagery classification.

북극해 해빙 탐지를 위한 Sentinel-1 HV자료의 방사보정 연구 (A Study on the Radiometric Correction of Sentinel-1 HV Data for Arctic Sea Ice Detection)

  • 김윤지;김덕진;권의진;김현철
    • 대한원격탐사학회지
    • /
    • 제34권6_2호
    • /
    • pp.1273-1282
    • /
    • 2018
  • 최근 북극항로와 온난화 등의 영향으로 인해 북극해에 대한 활발한 연구가 진행되고 있다. 기존에 수동 마이크로파 복사계를 이용하여 북극해 해빙의 정량적 면적을 산출하는 연구는 진행되어 왔으나, 보다 고해상도로 해빙의 가장자리에서 발생하는 융해 및 표면 거칠기 변화에 대한 연구는 잘 이루어지지 않았다. 또한, 최근 Sentinel1-A/B자료가 무료로 배포되고, 특히 북극해 영역에 대한 수많은 자료들이 짧은 기간 동안 생산 및 제공되고 있기에, 이러한 대용량 자료들을 모자익(mosaic)하여 북극해 전체에 대한 고해상도 해빙정보 이용이 가능하게 되었다. 그러나 Sentienl-1A/B의 광역관측(Extended Wide, EW)모드 자료를 효과적으로 사용하기 위해서는 보다 정확한 방사보정이 수행되어야 한다. 이를 위해 이중편파 Sentinel-1A/B 자료에 나타나는 thermal noise와 scalloping 효과를 자동적으로 보정할 수 있는 방사보정 기법을 개발하였으며, 나아가 방사보정 된 이중편파 SAR자료를 이용할 경우 해빙과 open-water를 보다 더 잘 구분할 수 있음을 확인하였다.