• 제목/요약/키워드: Sentimental analysis

검색결과 93건 처리시간 0.017초

잠재 토픽 기반의 제품 평판 마이닝 (Latent topics-based product reputation mining)

  • 박상민;온병원
    • 지능정보연구
    • /
    • 제23권2호
    • /
    • pp.39-70
    • /
    • 2017
  • 최근 여론조사 분야에서 데이터에 기반을 둔 분석 기법이 널리 활용되고 있다. 기업에서는 최근 출시된 제품에 대한 선호도를 조사하기 위해 기존의 설문조사나 전문가의 의견을 단순 취합하는 것이 아니라, 온라인상에 존재하는 다양한 종류의 데이터를 수집하고 분석하여 제품에 대한 대중의 기호를 정확히 파악할 수 있는 방안을 필요로 한다. 기존의 주요 방안에서는 먼저 해당 분야에 대한 감성사전을 구축한다. 전문가들은 수집된 텍스트 문서들로부터 빈도가 높은 단어들을 정리하여 긍정, 부정, 중립을 판단한다. 특정 제품의 선호를 판별하기 위해, 제품에 대한 사용 후기 글을 수집하여 문장을 추출하고, 감성사전을 이용하여 문장들의 긍정, 부정, 중립을 판단하여 최종적으로 긍정과 부정인 문장의 개수를 통해 제품에 대한 선호도를 측정한다. 그리고 제품에 대한 긍 부정 내용을 자동으로 요약하여 제공한다. 이것은 문장들의 감성점수를 산출하여, 긍정과 부정점수가 높은 문장들을 추출한다. 본 연구에서는 일반 대중이 생산한 문서 속에 숨겨져 있는 토픽을 추출하여 주어진 제품의 선호도를 조사하고, 토픽의 긍 부정 내용을 요약하여 보여주는 제품 평판 마이닝 알고리즘을 제안한다. 기존 방식과 다르게, 토픽을 활용하여 쉽고 빠르게 감성사전을 구축할 수 있으며 추출된 토픽을 정제하여 제품의 선호도와 요약 결과의 정확도를 높인다. 실험을 통해, K5, SM5, 아반떼 등의 국내에서 생산된 자동차의 수많은 후기 글들을 수집하였고, 실험 자동차의 긍 부정 비율, 긍 부정 내용 요약, 통계 검정을 실시하여 제안방안의 효용성을 입증하였다.

네이버 뉴스 댓글을 이용한 산업 분야별 담론의 감성에 기반한 주제 트렌드 및 여론의 변화와 주가 흐름의 연관성 분석 (Analyzing Topic Trends and the Relationship between Changes in Public Opinion and Stock Price based on Sentiment of Discourse in Different Industry Fields using Comments of Naver News)

  • 오찬희;김규리;주영준
    • 정보관리학회지
    • /
    • 제39권1호
    • /
    • pp.257-280
    • /
    • 2022
  • 본 연구에서는 대한민국 정부가 지정한 국가전략기술 사업인 반도체, 이차전지, 바이오 산업에 대한 여론을 파악하고 여론의 변화와 주가 흐름의 연관성을 분석하기 위해 각 산업별 대표 기업에 대한 기사의 댓글을 분석하였다. 반도체 산업에서 '삼성전자', 'SK하이닉스', 이차전지 산업에서 '삼성SDI', 'LG화학', 바이오 산업에서 '삼성바이오로직스', '셀트리온'을 선정하여 이를 제목에 포함하고 있는 2020년 1월 1일부터 2020년 12월 31일까지 발행된 네이버 뉴스 기사의 댓글 47,452개를 수집하고 분석하였다. 먼저, 해당 댓글을 긍정, 중립, 부정의 감성으로 나누고 각 감성 그룹에서의 시간의 흐름에 따른 댓글의 동적인 주제를 분석하여 각 산업별 여론의 트렌드를 파악하였다. 분석 결과 반도체 산업 분야의 경우 투자, 코로나19관련 이슈, 삼성전자라는 대기업에 대한 신뢰, 정부 정책 변화로 인한 타격에 대한 언급이 주제 토픽으로 나타났다. 이차전지 산업체의 경우 투자, 배터리, 기업 이슈에 대한 언급이 주제 토픽으로 나타났다. 바이오 산업체의 경우 투자, 코로나19 관련 이슈 및 기업 이슈에 대한 언급이 주제 토픽으로 나타났다. 다음으로, 댓글의 감성이 실제 주가와 연관성이 있는지를 알아보고자 각 대표 기업 별 주가의 변화와 댓글의 감성 점수 변화를 시각적 분석기법을 이용하여 비교 분석하였다. 분석 결과, 댓글의 감성 점수와 주가의 변화 흐름이 매우 유사하게 나타남을 통해 여론의 감성 점수 변화와 주가의 흐름에는 연관성이 있음을 확인하였다. 본 연구는 주가와의 연관성이 높은 뉴스 기사 댓글을 분석했다는 점, 수집 시기를 코로나19로 선정하여 코로나19라는 특수한 상황에서의 여론 트렌드 변화를 파악했다는 점, 국가전략기술제도에 속하는 산업 기업에 대한 여론을 분석하여 정부기관의 관련 정책 제정에 객관적인 근거를 제공하였다는 점에서 의의를 지닌다.

완전성과 간결성을 고려한 텍스트 요약 품질의 자동 평가 기법 (Automatic Quality Evaluation with Completeness and Succinctness for Text Summarization)

  • 고은정;김남규
    • 지능정보연구
    • /
    • 제24권2호
    • /
    • pp.125-148
    • /
    • 2018
  • 다양한 스마트 기기 및 관련 서비스의 증가에 따라 텍스트 데이터가 폭발적으로 증가하고 있으며, 이로 인해 방대한 문서로부터 필요한 정보만을 추려내는 작업은 더욱 어려워졌다. 따라서 텍스트 데이터로부터 핵심 내용을 자동으로 요약하여 제공할 수 있는 텍스트 자동 요약 기술이 최근 더욱 주목을 받고 있다. 텍스트 요약 기술은 뉴스 요약 서비스, 개인정보 약관 요약 서비스 등을 통해 현업에서도 이미 활발하게 적용되고 있으며, 학계에서도 문서의 주요 요소를 선별하여 제공하는 추출(Extraction) 접근법과 문서의 요소를 발췌한 뒤 이를 조합하여 새로운 문장을 구성하는 생성(Abstraction) 접근법에 따라 많은 연구가 이루어지고 있다. 하지만 문서의 자동 요약 기술에 비해, 자동으로 요약된 문서의 품질을 평가하는 기술은 상대적으로 많은 진전을 이루지 못하였다. 요약문의 품질 평가를 다룬 기존의 대부분의 연구들은 사람이 수작업으로 요약문을 작성하여 이를 기준 문서(Reference Document)로 삼고, 자동 요약문과 기준 문서와의 유사도를 측정하는 방식으로 수행되었다. 하지만 이러한 방식은 기준 문서의 작성 과정에 막대한 시간과 비용이 소요될 뿐 아니라 요약자의 주관에 의해 평가 결과가 다르게 나타날 수 있다는 한계를 갖는다. 한편 이러한 한계를 극복하기 위한 연구도 일부 수행되었는데, 대표적으로 전문에 대해 차원 축소를 수행하고 이렇게 축소된 전문과 자동 요약문의 유사도를 측정하는 기법이 최근 고안된 바 있다. 이 방식은 원문에서 출현 빈도가 높은 어휘가 요약문에 많이 나타날수록 해당 요약문의 품질이 우수한 것으로 평가하게 된다. 하지만 요약이란 본질적으로 많은 내용을 줄여서 표현하면서도 내용의 누락을 최소화하는 것을 의미하므로, 단순히 빈도수에 기반한 "좋은 요약"이 항상 본질적 의미에서의 "좋은 요약"을 의미한다고 보는 것은 무리가 있다. 요약문 품질 평가의 이러한 기존 연구의 한계를 극복하기 위해, 본 연구에서는 요약의 본질에 기반한 자동 품질 평가 방안을 제안한다. 구체적으로 요약문의 문장 중 서로 중복되는 내용이 얼마나 적은지를 나타내는 요소로 간결성(Succinctness) 개념을 정의하고, 원문의 내용 중 요약문에 포함되지 않은 내용이 얼마나 적은지를 나타내는 요소로 완전성(Completeness)을 정의한다. 본 연구에서는 간결성과 완전성의 개념을 적용한 요약문 품질 자동 평가 방법론을 제안하고, 이를 TripAdvisor 사이트 호텔 리뷰의 요약 및 평가에 적용한 실험 결과를 소개한다.