This paper presents a novel approach to automatically generate Korean multiword sentiment expressions by using a seed sentiment lexicon and a large-scale domain-specific corpus. A multiword sentiment expression consists of a seed sentiment word and its contextual words occurring adjacent to the seed word. The multiword sentiment expressions that are the focus of our study have a different polarity from that of the seed sentiment word. The automatically extracted multiword sentiment expressions show that 1) the contextual words should be defined as a part of a multiword sentiment expression in addition to their corresponding seed sentiment word, 2) the identified multiword sentiment expressions contain various indicators for polarity shift that have rarely been recognized before, and 3) the newly recognized shifters contribute to assigning a more accurate polarity value. The empirical result shows that the proposed approach achieves improved performance of the sentiment analysis system that uses an automatically generated lexicon.
본 연구에서는 다양한 워드 임베딩 기법이 감성분석의 성과에 미치는 영향을 확인하기 위한 비교연구를 제안한다. 감성분석은 자연어 처리를 사용하여 텍스트 문서에서 주관적인 정보를 식별하고 추출하는 오피니언 마이닝 기법 중 하나이며, 상품평이나 댓글의 감성을 분류하는데 사용될 수 있다. 감성은 긍정적이거나 부정적인 것으로 분류될 수 있기 때문에 일반적인 분류문제 중 하나로 생각할 수 있으며, 이의 분류를 위해서는 텍스트를 컴퓨터가 인식할 수 있는 언어로 변환하여야 한다. 따라서 단어나 문서와 같은 텍스트를 자연어 처리에서 벡터로 변형하여 진행하는데 이를 워드 임베딩이라고 한다. 워드 임베딩 기법은 Bag of Words, TF-IDF, Word2Vec 등 다양한 기법이 사용되고 있는데 지금까지 감성분석에 적합한 워드 임베딩 기법에 대한 연구는 많이 진행되지 않았다. 본 연구에서는 영화 리뷰의 감성분석을 위해 다양한 워드 임베딩 기법 중 Bag of Words, TF-IDF, Word2Vec을 사용하여 그 성과를 비교 분석한다. 분석에 사용할 연구용 데이터 셋은 텍스트 마이닝에서 많이 활용되고 있는 IMDB 데이터 셋을 사용하였다. 분석 결과, TF-IDF와 Bag of Words의 성과가 Word2Vec보다 우수한 것으로 나타났으며 TF-IDF는 Bag of Words보다 성과가 우수하였으나 그 차이가 매우 크지는 않았다.
감성사전은 감성 어휘에 대한 사전으로 감성 분석(Sentiment Analysis)을 위한 기초 자료로 활용된다. 이와 같은 감성사전을 구성하는 감성 어휘는 특정 도메인에 따라 감성의 종류나 정도가 달라질 수 있다. 예를 들면, '슬프다'라는 감성 어휘는 일반적으로 부정의 의미를 나타내지만 영화 도메인에 적용되었을 경우 부정의 의미를 나타내지 않는다. 그렇기 때문에 정확한 감성 분석을 수행하기 위해서는 특정 도메인에 알맞은 감성사전을 구축하는 것이 중요하다. 최근 특정 도메인에 알맞은 감성사전을 구축하기 위해 범용 감성 사전인 오픈한글, SentiWordNet 등을 활용한 연구가 진행되어 왔으나 오픈한글은 현재 서비스가 종료되어 활용이 불가능하며, SentiWordNet은 번역 간에 한국 감성 어휘들의 특징이 잘 반영되지 않는다는 문제점으로 인해 특정 도메인의 감성사전 구축을 위한 기초 자료로써 제약이 존재한다. 이 논문에서는 기존의 범용 감성사전의 문제점을 해결하기 위해 한국어 기반의 새로운 범용 감성사전을 구축하고 이를 KNU 한국어 감성사전이라 명명한다. KNU 한국어 감성사전은 표준국어대사전의 뜻풀이의 감성을 Bi-LSTM을 활용하여 89.45%의 정확도로 분류하였으며 긍정으로 분류된 뜻풀이에서는 긍정에 대한 감성 어휘를, 부정으로 분류된 뜻풀이에서는 부정에 대한 감성 어휘를 1-gram, 2-gram, 어구 그리고 문형 등 다양한 형태로 추출한다. 또한 다양한 외부 소스(SentiWordNet, SenticNet, 감정동사, 감성사전0603)를 활용하여 감성 어휘를 확장하였으며 온라인 텍스트 데이터에서 사용되는 신조어, 이모티콘에 대한 감성 어휘도 포함하고 있다. 이 논문에서 구축한 KNU 한국어 감성사전은 특정 도메인에 영향을 받지 않는 14,843개의 감성 어휘로 구성되어 있으며 특정 도메인에 대한 감성사전을 효율적이고 빠르게 구축하기 위한 기초 자료로 활용될 수 있다. 또한 딥러닝의 성능을 높이기 위한 입력 자질로써 활용될 수 있으며, 기본적인 감성 분석의 수행이나 기계 학습을 위한 대량의 학습 데이터 세트를 빠르게 구축에 활용될 수 있다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권8호
/
pp.4090-4102
/
2018
After emerging online communications, text mining and sentiment analysis has been frequently applied into analyzing electronic word-of-mouth. This study aims to develop a domain-specific lexicon of sentiment analysis to predict box office success in Korea film market and validate the feasibility of the lexicon. Natural language processing, a machine learning algorithm, and a lexicon-based sentiment classification method are employed. To create a movie domain sentiment lexicon, 233,631 reviews of 147 movies with popularity ratings is collected by a XML crawling package in R program. We accomplished 81.69% accuracy in sentiment classification by the Korean sentiment dictionary including 706 negative words and 617 positive words. The result showed a stronger positive relationship with box office success and consumers' sentiment as well as a significant positive effect in the linear regression for the predicting model. In addition, it reveals emotion in the user-generated content can be a more accurate clue to predict business success.
주관적 웰빙 서비스(subjective well-being service)는 Wellness IT의 주요 서비스이며 개인의 주관적 웰빙 상태를 무구속적이고 비용 효율적으로 측정하는 방법이 중요하다. 이를 위해 감성어휘사전을 활용할 수 있으나 감성어만으로 주관적 웰빙 상태를 측정할 수는 없으며 웰니스 어휘 사전이 별도로 구축될 필요가 있다. 더욱이 기존의 감성어휘사전은 동일한 감정어에 대해 한가지만의 감성값을 제공함으로써 그 용어를 사용한 사람의 특징에 따라 감성값이 변경될 수 있다는 점을 간과하고 있다. 따라서 본 연구의 목적은 현존하는 감성어휘사전 중에서 표현력이 가장 뛰어난 SenticNet을 기반으로 하여 SenticNet에서 제공하는 정보를 통해 스트레스, 우울, 분노, 행복감 등 웰니스 상태를 추정한 결과를 추가한 WellnessWordNet 을 개발하는 것이다. 또한 실제 사람들을 대상으로 WellnessWordNet 에 근거한 웰니스 상태 추정 정확도를 검증해 보았다. 본 논문의 독창성은 WellnessWordNet 웰니스 상태 언어에 대한 값을 제공할 뿐더러, 성별이나 연령과 같은 사람의 특성에 따라 다른 감성값을 제공하는 최초의 감성어휘사전이라는 것이다.
현 청소년들의 학교내 생활환경에서 문제점으로 대두되는 폭력 및 자살사고 발생률 증가에 대한 예방차원의 빅 데이터 처리 분석 시스템을 목표로 연구하였고 설계의 경제성과 용이성, 적용의 신속성 등을 고려해서 많은 이용률을 가지고 있는 오픈 소스인, 하둡 시스템(Hadoop system)의 맵리듀스(MapReduce) 알고리즘과 분산 병렬 환경을 위한 HDFS(Hadoop Distibuted File System) 구성을 사용하여 실험하였다. 연구에서 사용된 분석기법은 기존의 통계적인 분석기법들이 가지는 난이도를 피하기 위해 상업적인 사회 망의 비정형 대화 자료를 이용해서 폭력성 어휘에 대한 단어 수(word count) 분석을 적용하여 폭행, 자살사고를 사전에 감지하여 예방하는 감성분석(sentiment analysis) 시스템을 텍스트 마이닝 관점에서 제안하여 실험하였다.
트위터 감성 분석은 트윗글의 감성을 긍정과 부정으로 분류하는 작업이다. 이 연구에서는 SentiWordNet(SWN) 감성 사전에 기반한 트윗글 감성 분석을 다룬다. SWN은 전체 영어 단어에 대해 단어의 의미별로 긍정, 부정의 감성 강도를 저장해 둔 감성 사전이다. 기존 SWN 기반 감성 분석 연구들은 문서에 출현하는 각 용어의 감성을 SWN으로부터 결정한 다음 이를 바탕으로 문서 전체의 감성을 결정하였는데, 그 방법들이 매우 다양하다. 예를 들어, 한 용어의 감성 결정 시 해당 용어의 SWN 내 의미별 긍정, 부정 감성 강도 차이들의 평균을 계산하거나 긍정과 부정 각각의 감성 강도 평균 혹은 최대값을 구하기도 하며, 문서 전체의 감성을 결정하는 경우에도 문서 내 용어들의 감성 값들에 대해 평균 혹은 최대값을 취하기도 하였다. 또한 SWN 내 형용사, 동사, 명사, 부사의 품사 집합 전체 혹은 특정 부분집합에 대해 위의 감성 결정 작업을 적용하기도 한다. 이처럼 기존 연구에서는 SWN 기반의 다양한 감성 자질 추출 절차가 시도되고 있으나 이들 자질 추출 기법 전반에 대한 성능 비교 연구는 찾기 힘들다. 이 연구에서는 SWN을 트위터 감성 분석에 활용하는 다양한 방법들을 일반화하는 절차들을 소개하고 각 방법들의 성능 비교 및 분석 결과를 제시한다.
감성 분석에서 정확한 감성 분류는 중요한 연구 주제이다. 본 연구는 최근 많은 연구가 이루어지는 word2vec과 앙상블 방법을 이용하여 효과적으로 한국어 리뷰를 감성 분류하는 방법을 제시한다. 연구는 20 만 개의 한국 영화 리뷰 텍스트에 대해, 품사 기반 BOW 자질과 word2vec를 사용한 자질을 생성하고, 두 개의 자질 표현을 결합한 통합 자질을 생성했다. 감성 분류를 위해 Logistic Regression, Decision Tree, Naive Bayes, Support Vector Machine의 단일 분류기와 Adaptive Boost, Bagging, Gradient Boosting, Random Forest의 앙상블 분류기를 사용하였다. 연구 결과로 형용사와 부사를 포함한 BOW자질과 word2vec자질로 구성된 통합 자질 표현이 가장 높은 감성 분류 정확도를 보였다. 실증결과, 단일 분류기인 SVM이 가장 높은 성능을 나타내었지만, 앙상블 분류기는 단일 분류기와 비슷하거나 약간 낮은 성능을 보였다.
This paper introduces a new linguistic-focused approach for sentiment analysis (SA) of Korean. In order to overcome shortcomings of previous works that focused mainly on statistical methods, we made effective use of various linguistic features reflecting the nature of Korean. These features include contextual shifters, modal affixes, and the morphological dependency of chunk structures. Moreover, in order to eschew possible confusion caused by ambiguous words and to improve the results of SA, we also proposed simple adjustment methods of word senses using KOLON ontology mapping information. Through experiments we contend that effective use of linguistic features and ontological information can improve the results of sentiment analysis of Korean.
Sentiment analysis is a technique of text mining that extracts feelings of the person who wrote the sentence like movie review. The preliminary researches of sentiment analysis identify sentiments by using the dictionary which contains negative and positive words collected in advance. As researches on deep learning are actively carried out, sentiment analysis using deep learning model with morpheme or word unit has been done. However, this model has disadvantages in that the word dictionary varies according to the domain and the number of morphemes or words gets relatively larger than that of phonemes. Therefore, the size of the dictionary becomes large and the complexity of the model increases accordingly. We construct a sentiment analysis model using recurrent neural network by dividing input data into phoneme-level which is smaller than morpheme-level. To verify the performance, we use 30,000 movie reviews from the Korean biggest portal, Naver. Morpheme-level sentiment analysis model is also implemented and compared. As a result, the phoneme-level sentiment analysis model is superior to that of the morpheme-level, and in particular, the phoneme-level model using LSTM performs better than that of using GRU model. It is expected that Korean text processing based on a phoneme-level model can be applied to various text mining and language models.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.