• Title/Summary/Keyword: Sentiment mining

Search Result 239, Processing Time 0.032 seconds

User Experience Evaluation of Menstrual Cycle Measurement Application Using Text Mining Analysis Techniques (텍스트 마이닝 분석 기법을 활용한 월경주기측정 애플리케이션 사용자 경험 평가)

  • Wookyung Jeong;Donghee Shin
    • Journal of the Korean Society for information Management
    • /
    • v.40 no.4
    • /
    • pp.1-31
    • /
    • 2023
  • This study conducted user experience evaluation by introducing various text mining techniques along with topic modeling techniques for mobile menstrual cycle measurement applications that are closely related to women's health and analyzed the results by combining them with a honeycomb model. To evaluate the user experience revealed in the menstrual cycle measurement application review, 47,117 Korean reviews of the menstrual cycle measurement application were collected. Topic modeling analysis was conducted to confirm the overall discourse on the user experience revealed in the review, and text network analysis was conducted to confirm the specific experience of each topic. In addition, sentimental analysis was conducted to understand the emotional experience of users. Based on this, the development strategy of the menstrual cycle measurement application was presented in terms of accuracy, design, monitoring, data management, and user management. As a result of the study, it was confirmed that the accuracy and monitoring function of the menstrual cycle measurement of the application should be improved, and it was observed that various design attempts were required. In addition, the necessity of supplementing personal information and the user's biometric data management method was also confirmed. By exploring the user experience (UX) of the menstrual cycle measurement application in-depth, this study revealed various factors experienced by users and suggested practical improvements to provide a better experience. It is also significant in that it presents a methodology by combines topic modeling and text network analysis techniques so that researchers can closely grasp vast amounts of review data in the process of evaluating user experiences.

The Impact of Transforming Unstructured Data into Structured Data on a Churn Prediction Model for Loan Customers

  • Jung, Hoon;Lee, Bong Gyou
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4706-4724
    • /
    • 2020
  • With various structured data, such as the company size, loan balance, and savings accounts, the voice of customer (VOC), which is text data containing contact history and counseling details was analyzed in this study. To analyze unstructured data, the term frequency-inverse document frequency (TF-IDF) analysis, semantic network analysis, sentiment analysis, and a convolutional neural network (CNN) were implemented. A performance comparison of the models revealed that the predictive model using the CNN provided the best performance with regard to predictive power, followed by the model using the TF-IDF, and then the model using semantic network analysis. In particular, a character-level CNN and a word-level CNN were developed separately, and the character-level CNN exhibited better performance, according to an analysis for the Korean language. Moreover, a systematic selection model for optimal text mining techniques was proposed, suggesting which analytical technique is appropriate for analyzing text data depending on the context. This study also provides evidence that the results of previous studies, indicating that individual customers leave when their loyalty and switching cost are low, are also applicable to corporate customers and suggests that VOC data indicating customers' needs are very effective for predicting their behavior.

A Comparative Study of Dietary Related Zero-waste Patterns and Consumer Responses Before and After COVID-19 (코로나-19 이전과 이후 식생활 관련 제로웨이스트 운동 양상과 소비자 반응 비교)

  • Park, In-Hyoung;Park, You-min;Lee, Cheol;Sun, Jung-eun;Hu, Wendie;Chung, Jae-Eun
    • Human Ecology Research
    • /
    • v.60 no.1
    • /
    • pp.21-38
    • /
    • 2022
  • This study uses text mining compares and contrasts consumers' social media discourses on dietary related zero-waste movement before and after COVID-19. The results indicate that the amount of buzz on social networks for the zero- waste movement has been increasing after COVID-19. Additionally, the results of frequency analysis and topic modeling revealed that subjects associated with zero-waste movement were more diversified after COVID-19. Although the results of a sentiment analysis and word cloud visualization confirmed that consumers' positive responses toward the zero-waste have been increasing, they also revealed a need to educate and encourage those who are still not aware of the need for zero-waste. Finally, consumers mentioned only a small number of companies participating in zero-waste movement on SNS, indicating that the level of active involvement by such companies is much lower than that of consumers. Theoretical and educational implications as well as those for government policy-making are considered.

Analysis of User Reviews for Webtoon Applications Using Text Mining (텍스트 마이닝을 활용한 웹툰 애플리케이션 사용자 리뷰 분석)

  • Shin, Hyorim;Choi, Junho
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.457-468
    • /
    • 2022
  • With the rapid growth of the webtoon industry, a new model for webtoon applications has emerged. We have entered the era of webtoon application version 3.0 after ver 1.0 and ver 2.0. Despite these changes, research on user review analysis for webtoon applications is still insufficient. Therefore, this study aims to analyze user reviews for 'Kakao Webtoon (Daum Webtoon)' that presented the webtoon application 3.0 model. For analysis, 20,382 application reviews were collected and pre-processed, and TF-IDF, network analysis, topic modeling, and emotional analysis were conducted for each version. As a result, the user experience of the webtoon application for each version was analyzed and usability testing conducted.

Product Planning using Sentiment Analysis Technique Based on CNN-LSTM Model (CNN-LSTM 모델 기반의 감성분석을 이용한 상품기획 모델)

  • Kim, Do-Yeon;Jung, Jin-Young;Park, Won-Cheol;Park, Koo-Rack
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.427-428
    • /
    • 2021
  • 정보통신기술의 발달로 전자상거래의 증가와 소비자들의 제품에 대한 경험과 지식의 공유가 활발하게 진행됨에 따라 소비자는 제품을 구매하기 위한 자료수집, 활용을 진행하고 있다. 따라서 기업은 다양한 기능들을 반영한 제품이 치열하게 경쟁하고 있는 현 시장에서 우위를 점하고자 소비자 리뷰를 분석하여 소비자의 정확한 소비자의 요구사항을 분석하여 제품기획 프로세스에 반영하고자 텍스트마이닝(Text Mining) 기술과 딥러닝(Deep Learning) 기술을 통한 연구가 이루어지고 있다. 본 논문의 기초자료가 되는 데이터셋은 포털사이트의 구매사이트와 오픈마켓 사이트의 소비자 리뷰를 웹크롤링하고 자연어처리하여 진행한다. 감성분석은 딥러닝기술 중 CNN(Convolutional Neural Network), LSTM(Long Short Term Memory) 조합의 모델을 구현한다. 이는 딥러닝을 이용한 제품기획 프로세스로 소비자 요구사항 반영, 경제적인 측면, 제품기획 시간단축 등 긍정적인 영향을 미칠 것으로 기대한다.

  • PDF

The Impact of Online Reviews on Hotel Ratings through the Lens of Elaboration Likelihood Model: A Text Mining Approach

  • Qiannan Guo;Jinzhe Yan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.10
    • /
    • pp.2609-2626
    • /
    • 2023
  • The hotel industry is an example of experiential services. As consumers cannot fully evaluate the online review content and quality of their services before booking, they must rely on several online reviews to reduce their perceived risks. However, individuals face information overload owing to the explosion of online reviews. Therefore, consumer cognitive fluency is an individual's subjective experience of the difficulty in processing information. Information complexity influences the receiver's attitude, behavior, and purchase decisions. Individuals who cannot process complex information rely on the peripheral route, whereas those who can process more information prefer the central route. This study further discusses the influence of the complexity of review information on hotel ratings using online attraction review data retrieved from TripAdvisor.com. This study conducts a two-level empirical analysis to explore the factors that affect review value. First, in the Peripheral Route model, we introduce a negative binomial regression model to examine the impact of intuitive and straightforward information on hotel ratings. In the Central Route model, we use a Tobit regression model with expert reviews as moderator variables to analyze the impact of complex information on hotel ratings. According to the analysis, five-star and budget hotels have different effects on hotel ratings. These findings have immediate implications for hotel managers in terms of better identifying potentially valuable reviews.

Analyzing Contextual Polarity of Unstructured Data for Measuring Subjective Well-Being (주관적 웰빙 상태 측정을 위한 비정형 데이터의 상황기반 긍부정성 분석 방법)

  • Choi, Sukjae;Song, Yeongeun;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.83-105
    • /
    • 2016
  • Measuring an individual's subjective wellbeing in an accurate, unobtrusive, and cost-effective manner is a core success factor of the wellbeing support system, which is a type of medical IT service. However, measurements with a self-report questionnaire and wearable sensors are cost-intensive and obtrusive when the wellbeing support system should be running in real-time, despite being very accurate. Recently, reasoning the state of subjective wellbeing with conventional sentiment analysis and unstructured data has been proposed as an alternative to resolve the drawbacks of the self-report questionnaire and wearable sensors. However, this approach does not consider contextual polarity, which results in lower measurement accuracy. Moreover, there is no sentimental word net or ontology for the subjective wellbeing area. Hence, this paper proposes a method to extract keywords and their contextual polarity representing the subjective wellbeing state from the unstructured text in online websites in order to improve the reasoning accuracy of the sentiment analysis. The proposed method is as follows. First, a set of general sentimental words is proposed. SentiWordNet was adopted; this is the most widely used dictionary and contains about 100,000 words such as nouns, verbs, adjectives, and adverbs with polarities from -1.0 (extremely negative) to 1.0 (extremely positive). Second, corpora on subjective wellbeing (SWB corpora) were obtained by crawling online text. A survey was conducted to prepare a learning dataset that includes an individual's opinion and the level of self-report wellness, such as stress and depression. The participants were asked to respond with their feelings about online news on two topics. Next, three data sources were extracted from the SWB corpora: demographic information, psychographic information, and the structural characteristics of the text (e.g., the number of words used in the text, simple statistics on the special characters used). These were considered to adjust the level of a specific SWB. Finally, a set of reasoning rules was generated for each wellbeing factor to estimate the SWB of an individual based on the text written by the individual. The experimental results suggested that using contextual polarity for each SWB factor (e.g., stress, depression) significantly improved the estimation accuracy compared to conventional sentiment analysis methods incorporating SentiWordNet. Even though literature is available on Korean sentiment analysis, such studies only used only a limited set of sentimental words. Due to the small number of words, many sentences are overlooked and ignored when estimating the level of sentiment. However, the proposed method can identify multiple sentiment-neutral words as sentiment words in the context of a specific SWB factor. The results also suggest that a specific type of senti-word dictionary containing contextual polarity needs to be constructed along with a dictionary based on common sense such as SenticNet. These efforts will enrich and enlarge the application area of sentic computing. The study is helpful to practitioners and managers of wellness services in that a couple of characteristics of unstructured text have been identified for improving SWB. Consistent with the literature, the results showed that the gender and age affect the SWB state when the individual is exposed to an identical queue from the online text. In addition, the length of the textual response and usage pattern of special characters were found to indicate the individual's SWB. These imply that better SWB measurement should involve collecting the textual structure and the individual's demographic conditions. In the future, the proposed method should be improved by automated identification of the contextual polarity in order to enlarge the vocabulary in a cost-effective manner.

Sentiment Classification considering Korean Features (한국어 특성을 고려한 감성 분류)

  • Kim, Jung-Ho;Kim, Myung-Kyu;Cha, Myung-Hoon;In, Joo-Ho;Chae, Soo-Hoan
    • Science of Emotion and Sensibility
    • /
    • v.13 no.3
    • /
    • pp.449-458
    • /
    • 2010
  • As occasion demands to obtain efficient information from many documents and reviews on the Internet in many kinds of fields, automatic classification of opinion or thought is required. These automatic classification is called sentiment classification, which can be divided into three steps, such as subjective expression classification to extract subjective sentences from documents, sentiment classification to classify whether the polarity of documents is positive or negative, and strength classification to classify whether the documents have weak polarity or strong polarity. The latest studies in Opinion Mining have used N-gram words, lexical phrase pattern, and syntactic phrase pattern, etc. They have not used single word as feature for classification. Especially, patterns have been used frequently as feature because they are more flexible than N-gram words and are also more deterministic than single word. Theses studies are mainly concerned with English, other studies using patterns for Korean are still at an early stage. Although Korean has a slight difference in the meaning between predicates by the change of endings, which is 'Eomi' in Korean, of declinable words, the earlier studies about Korean opinion classification removed endings from predicates only to extract stems. Finally, this study introduces the earlier studies and methods using pattern for English, uses extracted sentimental patterns from Korean documents, and classifies polarities of these documents. In this paper, it also analyses the influence of the change of endings on performances of opinion classification.

  • PDF

A Study on Sentiment Score of Healthcare Service Quality on the Hospital Rating (의료 서비스 리뷰의 감성 수준이 병원 평가에 미치는 영향 분석)

  • Jee-Eun Choi;Sodam Kim;Hee-Woong Kim
    • Information Systems Review
    • /
    • v.20 no.2
    • /
    • pp.111-137
    • /
    • 2018
  • Considering the increase in health insurance benefits and the elderly population of the baby boomer generation, the amount consumed by health care in 2020 is expected to account for 20% of US GDP. As the healthcare industry develops, competition among the medical services of hospitals intensifies, and the need of hospitals to manage the quality of medical services increases. In addition, interest in online reviews of hospitals has increased as online reviews have become a tool to predict hospital quality. Consumers tend to refer to online reviews even when choosing healthcare service providers and after evaluating service quality online. This study aims to analyze the effect of sentiment score of healthcare service quality on hospital rating with Yelp hospital reviews. This study classifies large amount of text data collected online primarily into five service quality measurement indexes of SERVQUAL theory. The sentiment scores of reviews are then derived by SERVQUAL dimensions, and an econometric analysis is conducted to determine the sentiment score effects of the five service quality dimensions on hospital reviews. Results shed light on the means of managing online hospital reputation to benefit managers in the healthcare and medical industry.

Positioning of Smart Speakers by Applying Text Mining to Consumer Reviews: Focusing on Artificial Intelligence Factors (텍스트 마이닝을 활용한 스마트 스피커 제품의 포지셔닝: 인공지능 속성을 중심으로)

  • Lee, Jung Hyeon;Seon, Hyung Joo;Lee, Hong Joo
    • Knowledge Management Research
    • /
    • v.21 no.1
    • /
    • pp.197-210
    • /
    • 2020
  • The smart speaker includes an AI assistant function in the existing portable speaker, which enables a person to give various commands using a voice and provides various offline services associated with control of a connected device. The speed of domestic distribution is also increasing, and the functions and linked services available through smart speakers are expanding to shopping and food orders. Through text mining-based customer review analysis, there have been many proposals for identifying the impact on customer attitudes, sentiment analysis, and product evaluation of product functions and attributes. Emotional investigation has been performed by extracting words corresponding to characteristics or features from product reviews and analyzing the impact on assessment. After obtaining the topic from the review, the effect on the evaluation was analyzed. And the market competition of similar products was visualized. Also, a study was conducted to analyze the reviews of smart speaker users through text mining and to identify the main attributes, emotional sensitivity analysis, and the effects of artificial intelligence attributes on product satisfaction. The purpose of this study is to collect blog posts about the user's experiences of smart speakers released in Korea and to analyze the attitudes of customers according to their attributes. Through this, customers' attitudes can be identified and visualized by each smart speaker product, and the positioning map of the product was derived based on customer recognition of smart speaker products by collecting the information identified by each property.