• Title/Summary/Keyword: Sentiment mining

Search Result 239, Processing Time 0.032 seconds

A Big Data Study on Viewers' Response and Success Factors in the D2C Era Focused on tvN's Web-real Variety 'SinSeoYuGi' and Naver TV Cast Programming

  • Oh, Sejong;Ahn, Sunghun;Byun, Jungmin
    • International Journal of Advanced Culture Technology
    • /
    • v.4 no.2
    • /
    • pp.7-18
    • /
    • 2016
  • The first D2C-era web-real variety show in Korea was broadcast via tvN of CJ E&M. The web-real variety program 'SinSeoYuGi' accumulated 54 million views, along with 50 million views at the Chinese portal site QQ. This study carries out an analysis using text mining that extracts portal site blogs, twitter page views and associative terms. In addition, this study derives viewers' response by extracting key words with opinion mining techniques that divide positive words, neutral words and negative words through customer sentiment analysis. It is found that the success factors of the web-real variety were reduced in appearance fees and production cost, harmony between actual cast members and scenario characters, mobile TV programing, and pre-roll advertising. It is expected that web-real variety broadcasting will increase in value as web contents in the future, and be established as a new genre with the job of 'technical marketer' growing as well.

Brand Platformization and User Sentiment: A Text Mining Analysis of Nike Run Club with Comparative Insights from Adidas Runtastic (텍스트마이닝을 활용한 브랜드 플랫폼 사용자 감성 분석: 나이키 및 아디다스 러닝 앱 리뷰 비교분석을 중심으로)

  • Hanna Park;Yunho Maeng;Hyogun Kym
    • Knowledge Management Research
    • /
    • v.25 no.1
    • /
    • pp.43-66
    • /
    • 2024
  • In an era where digital technology reshapes brand-consumer interactions, this study examines the influence of Nike's Run Club and Adidas' Runtastic apps on loyalty and advocacy. Analyzing 3,715 English reviews from January 2020 to October 2023 through text mining, and conducting a focused sentiment analysis on 155 'recommend' mentions, we explore the nuances of 'hot loyalty'. The findings reveal Nike as a 'companion' with an emphasis on emotional engagement, versus Runtastic's 'tool' focus on reliability. This underscores the varied consumer perceptions across similar platforms, highlighting the necessity for brands to integrate user preferences and address technical flaws to foster loyalty. Demonstrating how customized technology adaptations impact loyalty, this research offers crucial insights for digital brand strategy, suggesting a proactive approach in app development and management for brand loyalty enhancement

Crisis Prediction of Regional Industry Ecosystem based on Text Sentiment Analysis Using News Data - Focused on the Automobile Industry in Gwangju - (뉴스 데이터를 활용한 텍스트 감성분석에 따른 지역 산업생태계 위기 예측 - 광주 지역 자동차 산업을 중심으로 -)

  • Kim, Hyun-Ji;Kim, Sung-Jin;Kim, Han-Gook
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.8
    • /
    • pp.1-9
    • /
    • 2020
  • As the aging problem of the regional industry ecosystem has gradually become serious, research to measure and regenerate the regional industry ecosystem decline has been actively conducted. However, little research has been done on regional industry ecosystem crises. Crisis emerges radically over a short period of time, and it is often impossible to respond by post-response, so you must respond before the crisis occurs. In other words, it is more necessary and required when looking at the crisis early and taking a proactive response from a long-term perspective. Therefore, it is necessary to develop a predictive model that can proactively recognize and respond to the crisis in the regional industry ecosystem. Therefore, this study checked the possibility of predicting the risk of regional industry and market according to the emotional score of the news by using large-scale news data. News sentiment analysis was performed using the Google sentiment analysis API, and this was organized by month to check the correlation between actual events.

Detection of Complaints of Non-Face-to-Face Work before and during COVID-19 by Using Topic Modeling and Sentiment Analysis (동적 토픽 모델링과 감성 분석을 이용한 COVID-19 구간별 비대면 근무 부정요인 검출에 관한 연구)

  • Lee, Sun Min;Chun, Se Jin;Park, Sang Un;Lee, Tae Wook;Kim, Woo Ju
    • The Journal of Information Systems
    • /
    • v.30 no.4
    • /
    • pp.277-301
    • /
    • 2021
  • Purpose The purpose of this study is to analyze the sentiment responses of the general public to non-face-to-face work using text mining methodology. As the number of non-face-to-face complaints is increasing over time, it is difficult to review and analyze in traditional methods such as surveys, and there is a limit to reflect real-time issues. Approach This study has proposed a method of the research model, first by collecting and cleansing the data related to non-face-to-face work among tweets posted on Twitter. Second, topics and keywords are extracted from tweets using LDA(Latent Dirichlet Allocation), a topic modeling technique, and changes for each section are analyzed through DTM(Dynamic Topic Modeling). Third, the complaints of non-face-to-face work are analyzed through the classification of positive and negative polarity in the COVID-19 section. Findings As a result of analyzing 1.54 million tweets related to non-face-to-face work, the number of IDs using non-face-to-face work-related words increased 7.2 times and the number of tweets increased 4.8 times after COVID-19. The top frequently used words related to non-face-to-face work appeared in the order of remote jobs, cybersecurity, technical jobs, productivity, and software. The words that have increased after the COVID-19 were concerned about lockdown and dismissal, and business transformation and also mentioned as to secure business continuity and virtual workplace. New Normal was newly mentioned as a new standard. Negative opinions found to be increased in the early stages of COVID-19 from 34% to 43%, and then stabilized again to 36% through non-face-to-face work sentiment analysis. The complaints were, policies such as strengthening cybersecurity, activating communication to improve work productivity, and diversifying work spaces.

Stock News Dataset Quality Assessment by Evaluating the Data Distribution and the Sentiment Prediction

  • Alasmari, Eman;Hamdy, Mohamed;Alyoubi, Khaled H.;Alotaibi, Fahd Saleh
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.1-8
    • /
    • 2022
  • This work provides a reliable and classified stocks dataset merged with Saudi stock news. This dataset allows researchers to analyze and better understand the realities, impacts, and relationships between stock news and stock fluctuations. The data were collected from the Saudi stock market via the Corporate News (CN) and Historical Data Stocks (HDS) datasets. As their names suggest, CN contains news, and HDS provides information concerning how stock values change over time. Both datasets cover the period from 2011 to 2019, have 30,098 rows, and have 16 variables-four of which they share and 12 of which differ. Therefore, the combined dataset presented here includes 30,098 published news pieces and information about stock fluctuations across nine years. Stock news polarity has been interpreted in various ways by native Arabic speakers associated with the stock domain. Therefore, this polarity was categorized manually based on Arabic semantics. As the Saudi stock market massively contributes to the international economy, this dataset is essential for stock investors and analyzers. The dataset has been prepared for educational and scientific purposes, motivated by the scarcity of data describing the impact of Saudi stock news on stock activities. It will, therefore, be useful across many sectors, including stock market analytics, data mining, statistics, machine learning, and deep learning. The data evaluation is applied by testing the data distribution of the categories and the sentiment prediction-the data distribution over classes and sentiment prediction accuracy. The results show that the data distribution of the polarity over sectors is considered a balanced distribution. The NB model is developed to evaluate the data quality based on sentiment classification, proving the data reliability by achieving 68% accuracy. So, the data evaluation results ensure dataset reliability, readiness, and high quality for any usage.

Classifying Social Media Users' Stance: Exploring Diverse Feature Sets Using Machine Learning Algorithms

  • Kashif Ayyub;Muhammad Wasif Nisar;Ehsan Ullah Munir;Muhammad Ramzan
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.79-88
    • /
    • 2024
  • The use of the social media has become part of our daily life activities. The social web channels provide the content generation facility to its users who can share their views, opinions and experiences towards certain topics. The researchers are using the social media content for various research areas. Sentiment analysis, one of the most active research areas in last decade, is the process to extract reviews, opinions and sentiments of people. Sentiment analysis is applied in diverse sub-areas such as subjectivity analysis, polarity detection, and emotion detection. Stance classification has emerged as a new and interesting research area as it aims to determine whether the content writer is in favor, against or neutral towards the target topic or issue. Stance classification is significant as it has many research applications like rumor stance classifications, stance classification towards public forums, claim stance classification, neural attention stance classification, online debate stance classification, dialogic properties stance classification etc. This research study explores different feature sets such as lexical, sentiment-specific, dialog-based which have been extracted using the standard datasets in the relevant area. Supervised learning approaches of generative algorithms such as Naïve Bayes and discriminative machine learning algorithms such as Support Vector Machine, Naïve Bayes, Decision Tree and k-Nearest Neighbor have been applied and then ensemble-based algorithms like Random Forest and AdaBoost have been applied. The empirical based results have been evaluated using the standard performance measures of Accuracy, Precision, Recall, and F-measures.

The Hangul Tweet Sentiment Analysis System using Opinion Mining (오피니언 마이닝을 이용한 한글 트윗 감정분석 시스템)

  • Eo, Mun-Seon;Park, Doo-Soon
    • Annual Conference of KIPS
    • /
    • 2013.11a
    • /
    • pp.1145-1146
    • /
    • 2013
  • 인터넷과 스마트폰의 발달로 SNS서비스의 사용자와 데이터가 활발하게 증가하고 있다. 이로 인하여 SNS 데이터의 가치와 신뢰성이 점점 증가하고 있으며, 이러한 추세에 따라 여러 연구와 실험을 통하여 데이터를 분석하고 분석 결과를 제공하는 서비스가 증가하고 있다. 본 논문에서는 이러한 배경을 바탕으로 특정 키워드를 포함하고 있는 한글 트윗을 검색하여 해당 트윗에 대한 연관 키워드와 감정 키워드를 분석해서 출력해주는 시스템을 개발한다.

Research on the Users' Inquiries on the Easy Payment Services using Text Mining Method (텍스트마이닝 방법을 이용한 간편결제서비스 이용자의 질문 분석)

  • Kim, Myoung Suk;Kim, Jiyeon
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.269-279
    • /
    • 2022
  • Though easy payment service is the most well accepted one among various fin-tech services, the users still face difficulties and feel embarrassed when they use it. Over the past few years, many studies have been done on the users' experiences of easy payment service but there are little studies directly exploring the users' inquiries on the web. In this paper, we analyzed users' questions on Kakao Pay, Naver Pay, and Samsung Pay in Naver Jisik-iN, the biggest inquiry service in Korea from 2019 to 2020. We used keyword analysis, association analysis, and sentiment analysis. We found out that each payment service has distinct inquiries from the users according to its platform which it is based on.

An Analysis of IT Proposal Evaluation Results using Big Data-based Opinion Mining (빅데이터 분석 기반의 오피니언 마이닝을 이용한 정보화 사업 평가 분석)

  • Kim, Hong Sam;Kim, Chong Su
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • Current evaluation practices for IT projects suffer from several problems, which include the difficulty of self-explanation for the evaluation results and the improperly scaled scoring system. This study aims to develop a methodology of opinion mining to extract key factors for the causal relationship analysis and to assess the feasibility of quantifying evaluation scores from text comments using opinion mining based on big data analysis. The research has been performed on the domain of publicly procured IT proposal evaluations, which are managed by the National Procurement Service. Around 10,000 sets of comments and evaluation scores have been gathered, most of which are in the form of digital data but some in paper documents. Thus, more refined form of text has been prepared using various tools. From them, keywords for factors and polarity indicators have been extracted, and experts on this domain have selected some of them as the key factors and indicators. Also, those keywords have been grouped into into dimensions. Causal relationship between keyword or dimension factors and evaluation scores were analyzed based on the two research models-a keyword-based model and a dimension-based model, using the correlation analysis and the regression analysis. The results show that keyword factors such as planning, strategy, technology and PM mostly affects the evaluation result and that the keywords are more appropriate forms of factors for causal relationship analysis than the dimensions. Also, it can be asserted from the analysis that evaluation scores can be composed or calculated from the unstructured text comments using opinion mining, when a comprehensive dictionary of polarity for Korean language can be provided. This study may contribute to the area of big data-based evaluation methodology and opinion mining for IT proposal evaluation, leading to a more reliable and effective IT proposal evaluation method.

A Method of Analyzing Sentiment Polarity of Multilingual Social Media: A Case of Korean-Chinese Languages (다국어 소셜미디어에 대한 감성분석 방법 개발: 한국어-중국어를 중심으로)

  • Cui, Meina;Jin, Yoonsun;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.91-111
    • /
    • 2016
  • It is crucial for the social media based marketing practices to perform sentiment analyze the unstructured data written by the potential consumers of their products and services. In particular, when it comes to the companies which are interested in global business, the companies must collect and analyze the data from the social media of multinational settings (e.g. Youtube, Instagram, etc.). In this case, since the texts are multilingual, they usually translate the sentences into a certain target language before conducting sentiment analysis. However, due to the lack of cultural differences and highly qualified data dictionary, translated sentences suffer from misunderstanding the true meaning. These result in decreasing the quality of sentiment analysis. Hence, this study aims to propose a method to perform a multilingual sentiment analysis, focusing on Korean-Chinese cases, while avoiding language translations. To show the feasibility of the idea proposed in this paper, we compare the performance of the proposed method with those of the legacy methods which adopt language translators. The results suggest that our method outperforms in terms of RMSE, and can be applied by the global business institutions.