• Title/Summary/Keyword: Sentiment mining

Search Result 239, Processing Time 0.028 seconds

Product Review Data and Sentiment Analytical Processing Modeling (상품 리뷰 데이터와 감성 분석 처리 모델링)

  • Yeon, Jong-Heum;Lee, Dong-Joo;Shim, Jun-Ho;Lee, Sang-Goo
    • The Journal of Society for e-Business Studies
    • /
    • v.16 no.4
    • /
    • pp.125-137
    • /
    • 2011
  • Product reviews in online shopping sites can serve as a useful guideline to buying decisions of customers. However, due to the massive amount of such reviews, it is almost impossible for users to read all the product reviews. For this reason, e-commerce sites provide users with useful reviews or statistics of ratings on products that are manually chosen or calculated. Opinion mining or sentiment analysis is a study on automating above process that involves firstly analyzing users' reviews on a product to tell if a review contains positive or negative feedback, and secondly, providing a summarized report of users' opinions. Previous researches focus on either providing polarity of a user's opinion or summarizing user's opinion on a feature of a product that result in relatively low usage of information that a user review contains. Actual user reviews contains not only mere assessment of a product, but also dissatisfaction and flaws of a product that a user experiences. There are increasing needs for effective analysis on such criteria to help users on their decision-making process. This paper proposes a model that stores various types of user reviews in a data warehouse, and analyzes integrated reviews dynamically. Also, we analyze reviews of an online application shopping site with the proposed model.

Customer Voices in Telehealth: Constructing Positioning Maps from App Reviews (고객 리뷰를 통한 모바일 앱 서비스 포지셔닝 분석: 비대면 진료 앱을 중심으로)

  • Minjae Kim;Hong Joo Lee
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.69-90
    • /
    • 2023
  • The purpose of this study is to evaluate the service attributes and consumer reactions of telemedicine apps in South Korea and visualize their differentiation by constructing positioning maps. We crawled 23,219 user reviews of 6 major telemedicine apps in Korea from the Google Play store. Topics were derived by BERTopic modeling, and sentiment scores for each topic were calculated through KoBERT sentiment analysis. As a result, five service characteristics in the application attribute category and three in the medical service category were derived. Based on this, a two-dimensional positioning map was constructed through principal component analysis. This study proposes an objective service evaluation method based on text mining, which has implications. In sum, this study combines empirical statistical methods and text mining techniques based on user review texts of telemedicine apps. It presents a system of service attribute elicitation, sentiment analysis, and product positioning. This can serve as an effective way to objectively diagnose the service quality and consumer responses of telemedicine applications.

Electronic-Composit Consumer Sentiment Index(CCSI) development by Social Bigdata Analysis (소셜빅데이터를 이용한 온라인 소비자감성지수(e-CCSI) 개발)

  • Kim, Yoosin;Hong, Sung-Gwan;Kang, Hee-Joo;Jeong, Seung-Ryul
    • Journal of Internet Computing and Services
    • /
    • v.18 no.4
    • /
    • pp.121-131
    • /
    • 2017
  • With emergence of Internet, social media, and mobile service, the consumers have actively presented their opinions and sentiment, and then it is spreading out real time as well. The user-generated text data on the Internet and social media is not only the communication text among the users but also the valuable resource to be analyzed for knowing the users' intent and sentiment. In special, economic participants have strongly asked that the social big data and its' analytics supports to recognize and forecast the economic trend in future. In this regard, the governments and the businesses are trying to apply the social big data into making the social and economic solutions. Therefore, this study aims to reveal the capability of social big data analysis for the economic use. The research proposed a social big data analysis model and an online consumer sentiment index. To test the model and index, the researchers developed an economic survey ontology, defined a sentiment dictionary for sentiment analysis, conducted classification and sentiment analysis, and calculated the online consumer sentiment index. In addition, the online consumer sentiment index was compared and validated with the composite consumer survey index of the Bank of Korea.

Measuring a Valence and Activation Dimension of Korean Emotion Terms using in Social Media (소셜 미디어에서 사용되는 한국어 정서 단어의 정서가, 활성화 차원 측정)

  • Rhee, Shin-Young;Ko, Il-Ju
    • Science of Emotion and Sensibility
    • /
    • v.16 no.2
    • /
    • pp.167-176
    • /
    • 2013
  • User-created text data are increasing rapidly caused by development of social media. In opinion mining, User's opinions are extracted by analyzing user's text. A primary goal of sentiment analysis as a branch of opinion mining is to extract user's opinions from a text that is required to build a list of emotion terms. In this paper, we built a list of emotion terms to analyse a sentiment of social media using Facebook as a representative social media. We collected data from Facebook and selected a emotion terms, and measured the dimensions of valence and activation through a survey. As a result, we built a list of 267 emotion terms including the dimension of valence and activation.

  • PDF

A Method of Predicting Service Time Based on Voice of Customer Data (고객의 소리(VOC) 데이터를 활용한 서비스 처리 시간 예측방법)

  • Kim, Jeonghun;Kwon, Ohbyung
    • Journal of Information Technology Services
    • /
    • v.15 no.1
    • /
    • pp.197-210
    • /
    • 2016
  • With the advent of text analytics, VOC (Voice of Customer) data become an important resource which provides the managers and marketing practitioners with consumer's veiled opinion and requirements. In other words, making relevant use of VOC data potentially improves the customer responsiveness and satisfaction, each of which eventually improves business performance. However, unstructured data set such as customers' complaints in VOC data have seldom used in marketing practices such as predicting service time as an index of service quality. Because the VOC data which contains unstructured data is too complicated form. Also that needs convert unstructured data from structure data which difficult process. Hence, this study aims to propose a prediction model to improve the estimation accuracy of the level of customer satisfaction by combining unstructured from textmining with structured data features in VOC. Also the relationship between the unstructured, structured data and service processing time through the regression analysis. Text mining techniques, sentiment analysis, keyword extraction, classification algorithms, decision tree and multiple regression are considered and compared. For the experiment, we used actual VOC data in a company.

A Study on Perceptions of Virtual Influencers through YouTube Comments -Focusing on Positive and Negative Emotional Responses Toward Character Design- (유튜브 댓글을 통해 살펴본 버추얼 인플루언서에 대한 인식 연구 -캐릭터 디자인에 대한 긍부정 감성 반응을 중심으로-)

  • Hyosun An;Jiyoung Kim
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.47 no.5
    • /
    • pp.873-890
    • /
    • 2023
  • This study analyzed users' emotional responses to VI character design through YouTube comments. The researchers applied text-mining to analyze 116,375 comments, focusing on terms related to character design and characteristics of VI. Using the BERT model in sentiment analysis, we classified comments into extremely negative, negative, neutral, positive, or extremely positive sentiments. Next, we conducted a co-occurrence frequency analysis on comments with extremely negative and extremely positive responses to examine the semantic relationships between character design and emotional characteristic terms. We also performed a content analysis of comments about Miquela and Shudu to analyze the perception differences regarding the two character designs. The results indicate that form elements (e.g., voice, face, and skin) and behavioral elements (e.g., speaking, interviewing, and reacting) are vital in eliciting users' emotional responses. Notably, in the negative responses, users focused on the humanization aspect of voice and the authenticity aspect of behavior in speaking, interviewing, and reacting. Furthermore, we found differences in the character design elements and characteristics that users expect based on the VI's field of activity. As a result, this study suggests applications to character design to accommodate these variations.

A Child Emotion Analysis System using Text Mining and Method for Constructing a Children's Emotion Dictionary (텍스트마이닝 기반 아동 감정 분석 시스템 및 아동용 감정 사전 구축 방안)

  • Young-Jun Park;Sun-Young Kim;Yo-Han Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.3
    • /
    • pp.545-550
    • /
    • 2024
  • In a society undergoing rapid change, modern individuals are facing various stresses, and there's a noticeable increase in mental health treatments for children as well. For the psychological well-being of children, it's crucial to swiftly discern their emotional states. However, this proves challenging as young children often articulate their emotions using limited vocabulary. This paper aims to categorize children's psychological states into four emotions: depression, anxiety, loneliness, and aggression. We propose a method for constructing an emotion dictionary tailored for children based on assessments from child psychology experts.

Text Mining-Based Analysis of Customer Reviews in Hong Kong Cinema: Uncovering the Evolution of Audience Preferences (홍콩 영화에 관한 고객 리뷰의 텍스트 마이닝 기반 분석: 관객 선호도의 진화 발견)

  • Huayang Sun;Jung Seung Lee
    • Journal of Information Technology Applications and Management
    • /
    • v.30 no.4
    • /
    • pp.77-86
    • /
    • 2023
  • This study conducted sentiment analysis on Hong Kong cinema from two distinct eras, pre-2000 and post-2000, examining audience preferences by comparing keywords from movie reviews. Before 2000, positive keywords like 'actors,' 'performance,' and 'atmosphere' revealed the importance of actors' popularity and their performances, while negative keywords such as 'forced' and 'violence' pointed out narrative issues. In contrast, post-2000 cinema emphasized keywords like 'scale,' 'drama,' and 'Yang Yang,' highlighting production scale and engaging narratives as key factors. Negative keywords included 'story,' 'cheesy,' 'acting,' and 'budget,' indicating challenges in storytelling and content quality. Word2Vec analysis further highlighted differences in acting quality and emotional engagement. Pre-2000 cinema focused on 'elegance' and 'excellence' in acting, while post-2000 cinema leaned towards 'tediousness' and 'awkwardness.' In summary, this research underscores the importance of actors, storytelling, and audience empathy in Hong Kong cinema's success. The industry has evolved, with a shift from actors to production quality. These findings have implications for the broader Chinese film industry, emphasizing the need for engaging narratives and quality acting to thrive in evolving cinematic landscapes.

Design of Twitter data collection system for regional sentiment analysis (지역별 감성 분석을 위한 트위터 데이터 수집 시스템 설계)

  • Choi, Kiwon;Kim, Hee-Cheol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.506-509
    • /
    • 2017
  • Opinion mining is a way to analyze the emotions in the text and is used to identify the emotional state of the author and to find out the opinions of the public. As you can analyze individual emotions through opinion mining, if you analyze the text by region, you can find out the emotional state you have in each region. The regional sentiment analysis can obtain information that could not be obtained from personal sentiment analysis, and if a certain area has emotions, it can understand the cause. For regional sentiment analysis, we need text data created by region, so we need to collect data through Twitter crawling. Therefore, this paper designs a Twitter data collection system for regional sentiment analysis. The client requests the tweet data of the specific region and time, and the server collects and transmits the requested tweet data from the client. Through the latitude and longitude values of the region, it collects the tweet data of the area, and it can manage the text by region and time through collected data. We expect efficient data collection and management for emotional analysis through the design of this system.

  • PDF

A study on Korean tourism trends using social big data -Focusing on sentiment analysis- (소셜 빅데이터를 활용한 한국관광 트렌드에 관한연구 -감성분석을 중심으로-)

  • Youn-hee Choi;Kyoung-mi Yoo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.97-109
    • /
    • 2024
  • In the field of domestic tourism, tourism trend analysis of tourism consumers, both international tourists and domestic tourists, is essential not only for the Korean tourism market but also for local and governmental tourism policy makers. e will explore the keywords and sentiment analysis on social media to establish a marketing strategy plan and revitalize the domestic tourism industry through communication and information from tourism consumers. This study utilized TEXTOM 6.0 to analyze recent trends in Korean tourism. Data was collected from September 31, 2022, to August 31, 2023, using 'Korean tourism' and 'domestic tourism' as keywords, targeting blogs, cafes, and news provided by Naver, Daum, and Google. Through text mining, 100 key words and TF-IDF were extracted in order of frequency, and then CONCOR analysis and sentiment analysis were conducted. For Korean tourism keywords, words related to tourist destinations, travel companions and behaviors, tourism motivations and experiences, accommodation types, tourist information, and emotional connections ranked high. The results of the CONCOR analysis were categorized into five clusters related to tourist destinations, tourist information, tourist activities/experiences, tourism motivation/content, and inbound related. Finally, the sentiment analysis showed a high level of positive documents and vocabulary. This study analyzes the rapidly changing trends of Korean tourism through text mining on Korean tourism and is expected to provide meaningful data to promote domestic tourism not only for Koreans but also for foreigners visiting Korea.