• 제목/요약/키워드: Sentiment mining

검색결과 239건 처리시간 0.023초

Text Mining and Sentiment Analysis for Predicting Box Office Success

  • Kim, Yoosin;Kang, Mingon;Jeong, Seung Ryul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권8호
    • /
    • pp.4090-4102
    • /
    • 2018
  • After emerging online communications, text mining and sentiment analysis has been frequently applied into analyzing electronic word-of-mouth. This study aims to develop a domain-specific lexicon of sentiment analysis to predict box office success in Korea film market and validate the feasibility of the lexicon. Natural language processing, a machine learning algorithm, and a lexicon-based sentiment classification method are employed. To create a movie domain sentiment lexicon, 233,631 reviews of 147 movies with popularity ratings is collected by a XML crawling package in R program. We accomplished 81.69% accuracy in sentiment classification by the Korean sentiment dictionary including 706 negative words and 617 positive words. The result showed a stronger positive relationship with box office success and consumers' sentiment as well as a significant positive effect in the linear regression for the predicting model. In addition, it reveals emotion in the user-generated content can be a more accurate clue to predict business success.

Competitive intelligence in Korean Ramen Market using Text Mining and Sentiment Analysis

  • Kim, Yoosin;Jeong, Seung Ryul
    • 인터넷정보학회논문지
    • /
    • 제19권1호
    • /
    • pp.155-166
    • /
    • 2018
  • These days, online media, such as blogospheres, online communities, and social networking sites, provides the uncountable user-generated content (UGC) to discover market intelligence and business insight with. The business has been interested in consumers, and constantly requires the approach to identify consumers' opinions and competitive advantage in the competing market. Analyzing consumers' opinion about oneself and rivals can help decision makers to gain in-depth and fine-grained understanding on the human and social behavioral dynamics underlying the competition. In order to accomplish the comparison study for rival products and companies, we attempted to do competitive analysis using text mining with online UGC for two popular and competing ramens, a market leader and a market follower, in the Korean instant noodle market. Furthermore, to overcome the lack of the Korean sentiment lexicon, we developed the domain specific sentiment dictionary of Korean texts. We gathered 19,386 pieces of blogs and forum messages, developed the Korean sentiment dictionary, and defined the taxonomy for categorization. In the context of our study, we employed sentiment analysis to present consumers' opinion and statistical analysis to demonstrate the differences between the competitors. Our results show that the sentiment portrayed by the text mining clearly differentiate the two rival noodles and convincingly confirm that one is a market leader and the other is a follower. In this regard, we expect this comparison can help business decision makers to understand rich in-depth competitive intelligence hidden in the social media.

심리학적 감정과 소셜 웹 자료를 이용한 감성의 실증적 분류 (Empirical Sentiment Classification Using Psychological Emotions and Social Web Data)

  • 장문수
    • 한국지능시스템학회논문지
    • /
    • 제22권5호
    • /
    • pp.563-569
    • /
    • 2012
  • 소셜 웹이 확산되면서 오피니언 마이닝 혹은 감성 분석 연구가 주목을 받고 있다. 감성 분석을 위해서는 감성을 판별하기 위한 감성자원이 제공되어야 한다. 기존 감성 분석에서는 감성의 극성에 대한 강도를 표현하는 방법으로 리소스를 구축하고 이를 통하여 의견의 극성을 결정하였다. 본 논문에서는 의견의 극성뿐만 아니라 긍/부정의 근거가 되는 감성의 카테고리를 구성하고자 한다. 본 논문에서는 합리적인 분류를 위하여 심리학적 감정들을 초기 감성으로 정의한다. 그리고 실제로 소셜 웹에서 사용되는 감성의 분포를 얻기 위하여 소셜 웹의 텍스트를 분석하여 감성 정보를 추출한다. 추출한 감성 정보를 이용하여 초기 감성들을 재분류함으로써 소셜 웹을 위한 감성 카테고리를 구성한다. 본 논문에서는 이 방법을 통하여 23개의 감성 카테고리를 제시한다.

재무 보고서의 키워드 검출 기반 딥러닝 감성분석 기법 (Toward Sentiment Analysis Based on Deep Learning with Keyword Detection in a Financial Report)

  • Jo, Dongsik;Kim, Daewhan;Shin, Yoojin
    • 한국정보통신학회논문지
    • /
    • 제24권5호
    • /
    • pp.670-673
    • /
    • 2020
  • Recent advances in artificial intelligence have allowed for easier sentiment analysis (e.g. positive or negative forecast) of documents such as a finance reports. In this paper, we investigate a method to apply text mining techniques to extract in the financial report using deep learning, and propose an accounting model for the effects of sentiment values in financial information. For sentiment analysis with keyword detection in the financial report, we suggest the input layer with extracted keywords, hidden layers by learned weights, and the output layer in terms of sentiment scores. Our approaches can help more effective strategy for potential investors as a professional guideline using sentiment values.

리뷰에서의 고객의견의 다층적 지식표현 (Multilayer Knowledge Representation of Customer's Opinion in Reviews)

  • ;원광복;옥철영
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.652-657
    • /
    • 2018
  • With the rapid development of e-commerce, many customers can now express their opinion on various kinds of product at discussion groups, merchant sites, social networks, etc. Discerning a consensus opinion about a product sold online is difficult due to more and more reviews become available on the internet. Opinion Mining, also known as Sentiment analysis, is the task of automatically detecting and understanding the sentimental expressions about a product from customer textual reviews. Recently, researchers have proposed various approaches for evaluation in sentiment mining by applying several techniques for document, sentence and aspect level. Aspect-based sentiment analysis is getting widely interesting of researchers; however, more complex algorithms are needed to address this issue precisely with larger corpora. This paper introduces an approach of knowledge representation for the task of analyzing product aspect rating. We focus on how to form the nature of sentiment representation from textual opinion by utilizing the representation learning methods which include word embedding and compositional vector models. Our experiment is performed on a dataset of reviews from electronic domain and the obtained result show that the proposed system achieved outstanding methods in previous studies.

  • PDF

한글 음소 단위 딥러닝 모형을 이용한 감성분석 (Sentiment Analysis Using Deep Learning Model based on Phoneme-level Korean)

  • 이재준;권순범;안성만
    • 한국IT서비스학회지
    • /
    • 제17권1호
    • /
    • pp.79-89
    • /
    • 2018
  • Sentiment analysis is a technique of text mining that extracts feelings of the person who wrote the sentence like movie review. The preliminary researches of sentiment analysis identify sentiments by using the dictionary which contains negative and positive words collected in advance. As researches on deep learning are actively carried out, sentiment analysis using deep learning model with morpheme or word unit has been done. However, this model has disadvantages in that the word dictionary varies according to the domain and the number of morphemes or words gets relatively larger than that of phonemes. Therefore, the size of the dictionary becomes large and the complexity of the model increases accordingly. We construct a sentiment analysis model using recurrent neural network by dividing input data into phoneme-level which is smaller than morpheme-level. To verify the performance, we use 30,000 movie reviews from the Korean biggest portal, Naver. Morpheme-level sentiment analysis model is also implemented and compared. As a result, the phoneme-level sentiment analysis model is superior to that of the morpheme-level, and in particular, the phoneme-level model using LSTM performs better than that of using GRU model. It is expected that Korean text processing based on a phoneme-level model can be applied to various text mining and language models.

SNS와 뉴스기사의 감성분석과 기계학습을 이용한 주가예측 모형 비교 연구 (A Comparative Study between Stock Price Prediction Models Using Sentiment Analysis and Machine Learning Based on SNS and News Articles)

  • 김동영;박제원;최재현
    • 한국IT서비스학회지
    • /
    • 제13권3호
    • /
    • pp.221-233
    • /
    • 2014
  • Because people's interest of the stock market has been increased with the development of economy, a lot of studies have been going to predict fluctuation of stock prices. Latterly many studies have been made using scientific and technological method among the various forecasting method, and also data using for study are becoming diverse. So, in this paper we propose stock prices prediction models using sentiment analysis and machine learning based on news articles and SNS data to improve the accuracy of prediction of stock prices. Stock prices prediction models that we propose are generated through the four-step process that contain data collection, sentiment dictionary construction, sentiment analysis, and machine learning. The data have been collected to target newspapers related to economy in the case of news article and to target twitter in the case of SNS data. Sentiment dictionary was built using news articles among the collected data, and we utilize it to process sentiment analysis. In machine learning phase, we generate prediction models using various techniques of classification and the data that was made through sentiment analysis. After generating prediction models, we conducted 10-fold cross-validation to measure the performance of they. The experimental result showed that accuracy is over 80% in a number of ways and F1 score is closer to 0.8. The result can be seen as significantly enhanced result compared with conventional researches utilizing opinion mining or data mining techniques.

주가지수 방향성 예측을 위한 주제지향 감성사전 구축 방안 (Predicting the Direction of the Stock Index by Using a Domain-Specific Sentiment Dictionary)

  • 유은지;김유신;김남규;정승렬
    • 지능정보연구
    • /
    • 제19권1호
    • /
    • pp.95-110
    • /
    • 2013
  • 최근 다양한 소셜미디어를 통해 생성되는 비정형 데이터의 양은 빠른 속도로 증가하고 있으며, 이를 저장, 가공, 분석하기 위한 도구의 개발도 이에 맞추어 활발하게 이루어지고 있다. 이러한 환경에서 다양한 분석도구를 통해 텍스트 데이터를 분석함으로써, 기존의 정형 데이터 분석을 통해 해결하지 못했던 이슈들을 해결하기 위한 많은 시도가 이루어지고 있다. 특히 트위터나 페이스북을 통해 실시간에 근접하게 생산되는 글들과 수많은 인터넷 사이트에 게시되는 다양한 주제의 글들은, 방대한 양의 텍스트 분석을 통해 많은 사람들의 의견을 추출하고 이를 통해 향후 수익 창출에 기여할 수 있는 새로운 통찰을 발굴하기 위한 움직임에 동기를 부여하고 있다. 뉴스 데이터에 대한 오피니언 마이닝을 통해 주가지수 등락 예측 모델을 제안한 최근의 연구는 이러한 시도의 대표적 예라고 할 수 있다. 우리가 여러 매체를 통해 매일 접하는 뉴스 역시 대표적인 비정형 데이터 중의 하나이다. 이러한 비정형 텍스트 데이터를 분석하는 오피니언 마이닝 또는 감성 분석은 제품, 서비스, 조직, 이슈, 그리고 이들의 여러 속성에 대한 사람들의 의견, 감성, 평가, 태도, 감정 등을 분석하는 일련의 과정을 의미한다. 이러한 오피니언 마이닝을 다루는 많은 연구는, 각 어휘별로 긍정/부정의 극성을 규정해 놓은 감성사전을 사용하며, 한 문장 또는 문서에 나타난 어휘들의 극성 분포에 따라 해당 문장 또는 문서의 극성을 산출하는 방식을 채택한다. 하지만 특정 어휘의 극성은 한 가지로 고유하게 정해져 있지 않으며, 분석의 목적에 따라 그 극성이 상이하게 나타날 수도 있다. 본 연구는 특정 어휘의 극성은 한 가지로 고유하게 정해져 있지 않으며, 분석의 목적에 따라 그 극성이 상이하게 나타날 수도 있다는 인식에서 출발한다. 동일한 어휘의 극성이 해석하는 사람의 입장에 따라 또는 분석 목적에 따라 서로 상이하게 해석되는 현상은 지금까지 다루어지지 않은 어려운 이슈로 알려져 있다. 구체적으로는 주가지수의 상승이라는 한정된 주제에 대해 각 관련 어휘가 갖는 극성을 판별하여 주가지수 상승 예측을 위한 감성사전을 구축하고, 이를 기반으로 한 뉴스 분석을 통해 주가지수의 상승을 예측한 결과를 보이고자 한다.

A Sentiment Classification Approach of Sentences Clustering in Webcast Barrages

  • Li, Jun;Huang, Guimin;Zhou, Ya
    • Journal of Information Processing Systems
    • /
    • 제16권3호
    • /
    • pp.718-732
    • /
    • 2020
  • Conducting sentiment analysis and opinion mining are challenging tasks in natural language processing. Many of the sentiment analysis and opinion mining applications focus on product reviews, social media reviews, forums and microblogs whose reviews are topic-similar and opinion-rich. In this paper, we try to analyze the sentiments of sentences from online webcast reviews that scroll across the screen, which we call live barrages. Contrary to social media comments or product reviews, the topics in live barrages are more fragmented, and there are plenty of invalid comments that we must remove in the preprocessing phase. To extract evaluative sentiment sentences, we proposed a novel approach that clusters the barrages from the same commenter to solve the problem of scattering the information for each barrage. The method developed in this paper contains two subtasks: in the data preprocessing phase, we cluster the sentences from the same commenter and remove unavailable sentences; and we use a semi-supervised machine learning approach, the naïve Bayes algorithm, to analyze the sentiment of the barrage. According to our experimental results, this method shows that it performs well in analyzing the sentiment of online webcast barrages.

Comparing Machine Learning Classifiers for Movie WOM Opinion Mining

  • Kim, Yoosin;Kwon, Do Young;Jeong, Seung Ryul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권8호
    • /
    • pp.3169-3181
    • /
    • 2015
  • Nowadays, online word-of-mouth has become a powerful influencer to marketing and sales in business. Opinion mining and sentiment analysis is frequently adopted at market research and business analytics field for analyzing word-of-mouth content. However, there still remain several challengeable areas for 1) sentiment analysis aiming for Korean word-of-mouth content in film market, 2) availability of machine learning models only using linguistic features, 3) effect of the size of the feature set. This study took a sample of 10,000 movie reviews which had posted extremely negative/positive rating in a movie portal site, and conducted sentiment analysis with four machine learning algorithms: naïve Bayesian, decision tree, neural network, and support vector machines. We found neural network and support vector machine produced better accuracy than naïve Bayesian and decision tree on every size of the feature set. Besides, the performance of them was boosting with increasing of the feature set size.