• Title/Summary/Keyword: Sensory receptor

Search Result 112, Processing Time 0.034 seconds

Cloning of a novel ion channel candidate by in silico gene mining

  • Shim, Won-Sik;Kim, Man-Su;Yang, Young-Duk;Park, Seung-Pyo;Kim, Byung-Moon;Oh, Uh-Taek
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.192.2-193
    • /
    • 2003
  • Capsaicin, a pungent ingredient in chili pepper, is known to excite sensory neurons that mediate pain sensation. This effect of capsaicin is determined by unique receptors and the capsaicin receptor (transient receptor potential subfamily V, member 1 (TRPV1)) was cloned recently. TRPV1 contains six transmembrane domains and three ankyrin repeats at N-terminal. This characteristic architecture is common in other ion channel in TRPV families. (omitted)

  • PDF

Synaptic Facilitation of Naive and Depressed Synapses in Aplysia

  • Chang, Deok-Jin;Kaang, Bong-Kiun
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2001.06a
    • /
    • pp.23-23
    • /
    • 2001
  • To evaluate the contribution of cAMP/PKA signal pathway in short-term facilitation, we overexpressed Ap oal receptor in sensory neurons that do not normally express this receptor. We have previously shown that activation of this receptor in sensory cells, by a brief treatment with octopamine (OA), produced short-term facilitation such as membrane depolarization, increase in membrane excitability, spike broadening, and enhanced neurotransmitter release in non-depressed synapse.(omitted)

  • PDF

Reactive oxygen species-specific characteristics of transient receptor potential ankyrin 1 receptor and its pain modulation

  • Hyun-Ji Yoon;Sung-Cherl Jung
    • Journal of Medicine and Life Science
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Transient receptor potential ankyrin 1 (TRPA1) receptors are major polymodal nociceptors that generate primary pain responses in the peripheral nerve endings of the dorsal root ganglion neurons. Recently, we reported that the activation of TRPA1 receptors by reactive oxygen species (ROS) signaling, which is triggered by Ca2+ influx through T-type Ca2+ channels, contributes to prolonged pain responses induced by jellyfish toxin. In this review, we focus on the characteristics of the TRPA1 receptor involved in intracellular signaling as a secondary pain modulator. Unlike other transient receptor potential receptors, TRPA1 receptors can induce membrane depolarization by ROS without exogenous stimuli in peripheral and central sensory neurons. Therefore, it is important to identify the functional characteristics of TRPA1 receptors to understand pain modulation under several pathogenic conditions such as neuropathic pain syndromes and autoimmune diseases, which are mediated by oxidative signaling to cause chronic pain in the sensory system.

Neurotoxic Desensitizing Effect of Capsaicin on Peripheral Sensory Nerve Endings in Guinea Pig Bronchi (기니픽 기관지 말초신경에 대한 캡사이신의 탈감작 효과)

  • Jung, Yi-Sook;Cho, Tai-Soon;Moon, Chang-Hyun;Shin, Hwa-Sup
    • YAKHAK HOEJI
    • /
    • v.41 no.1
    • /
    • pp.139-146
    • /
    • 1997
  • In the present study, capsaicin-induced desensitization of peripheral sensory nerves were investigated by using guinea pig bronchi, in which these nerves are stimulated with cap saicin to produce a contractile response via the release of sensory neuropeptides such as substance P and neurokinin A. The contractile response to capsaicin was inhibited by the combination of CP96345 and SR 48968 suggesting that the excitatory effect of capsaicin is mediated via both the tachykinin NK-1 and NK-2 receptor. Capsaicin produced in vitro-desensitization in dose-dependent manner, but after this in vitro-desensitization the response to NK-1 and NK-2 receptor agonist did not change. Systemic administration (s.c.) of capsaicin also desensitized significantly bronchial tissues but could not produce any change in the contractile response to the selective agonists of NK-1 and NK-2 receptor. Therefore, the present results suggest that functional desensitization to capsaicin-induced contractile response in guinea pig bronchi does not involve NK-1 and NK-2 receptor, while excitatory effect of capsaicin is mediated via both NK-1 and NK-2 receptor. In conclusion, it is suggested that capsaicin- induced excitation and desensitization involves somewhat different pathways.

  • PDF

Decreased Pain Sensitivity of Capsaicin-Treated Rats Results from Decreased VR1 Expression

  • Lee, Soon-Youl;Hong, Young-Mi;Oh, Uh-Taek
    • Archives of Pharmacal Research
    • /
    • v.27 no.11
    • /
    • pp.1154-1160
    • /
    • 2004
  • We investigated the neurotoxic effects of capsaicin (CAP) on pain sensitivity and on the expression of capsaicin receptor, the vanilloid receptor (VR1), in rats. High-dose application of CAP has been known to degenerate a large fraction of the sensory neurons. Although the neurotoxic effects of CAP are well documented, the effects of CAP on the vanilloid receptor (VR1) are not yet known. In this paper, we investigated the effects of high-dose application of CAP on the expression of VR1 in rats. Thermal and mechanical pain sensitivity was reduced when neonatal rats were treated with a high dose of CAP. This reduction of pain sensitivity was significantly decreased after initiating carrageenan-induced inflammation. The expression of VR1 in dorsal root ganglia (DRG) isolated from the CAP-treated rats was reduced compared to that from the vehicle-treated rats. Therefore, we can conclude that the neurotoxic effect of CAP is related to the decrease of VR1 expression.

A Study on Information Transmission Processing Types of Exhibition Medium per Sensory receptor - Focus on National Museum of Nature and Science's Global Gallery, Tokyo - (감각수용기 종류에 따른 전시매체 분석과 유형에 관한 연구 - 동경 국립과학박물관 지구관을 중심으로 -)

  • Jeong, Hye-In;Lim, Che-Zinn
    • Korean Institute of Interior Design Journal
    • /
    • v.22 no.1
    • /
    • pp.291-298
    • /
    • 2013
  • A science museum responds independently based on the exhibits and exhibition environments as the visitors are different in purposes, interests and demands. Therefore a science museum should be designed keeping it in mind that there are various ways for visitors to perceive and use the exhibition spaces and exhibits. The purpose of this study is to compare and analyze the characteristics of sensory receptors for the exhibits in National Museum of Nature and Science's Global Gallery, Tokyo, in terms of information transmission and to identify the nature of exhibit medium that can affect the perception and recognition of the exhibits by visitors. Through these 9 sensory receptors, human recognizes first with visual, auditory and olfactory senses and reacts using vestibular organ, proprioceptor (stretch), tangoreceptor, themoreceptor, taste and olfactory senses. Human uses these information processing to recolonize the external environment. This process is similar to the visitor's information transmission process for the exhibition medium. By dividing the analysis results per exhibition theme and developing the information transmission processing types per sensory receptor, we could understand that the distribution conditions are closely connected with the composition of the exhibition scenario in the exhibtion area. Especially, the understanding of how the information transmission is made through sensory receptors could can be the criteria that determines on the factors that can identify the exhibition purposes of a science museum which are eduction and understanding.

Brain Vesicle Structure and Formation of the Hydrostatic Pressure Receptors in Larvae of the Ascidian (Halocynthia roretzi) (우렁쉥이(Halocynthia roretzi) 유생의 뇌포 구조와 수압수용쳬의 형성)

  • Kim Jung-Eun;Seo Hyeong-Joo;Kim Gil-Jung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.39 no.2
    • /
    • pp.94-99
    • /
    • 2006
  • The tadpole larvae of most ascidians have two sensory pigment cells in their brain vesicle. The anterior otolith pigment cell is sensitive to gravity, whereas the posterior ocellus pigment cell responds to light. Besides these two sensory cells, the larvae also possess another type of sensory receptor cell: hydrostatic pressure receptor (Hpr) cells. The Hpr cells have been presumed to sense hydrostatic water pressure, although no functional analysis has been performed. In larvae of the ascidian Halocynthia reretzi, the development of the Hpr cells and their structure in the brain vesicle are poorly understood. To investigate the morphology and formation of the Hpr cells, we established a monoclonal antibody, Hpr-1, that specifically recognizes Hpr cells. The Hpr-1 antigens became detectable in the brain vesicle at the late tailbud stage. Each Hpr cell projected a small globular body, connected by a short stalk, into the lumen of the brain vesicle. The brain vesicle showed remarkable left-right asymmetry. Pigment cells were located on the right side in the lumen of the brain vesicle, whereas Hpr cells were present in the left side. After metamorphosis, the Hpr cells were observed near the rudimental siphons of the juvenile.

The Anatomy and Histoarchitecture of the Olfactory Organ in the Korean Flat-Headed Goby Luciogobius guttatus (Pisces; Gobiidae)

  • Kim, Hyun-Tae;Park, Jong-Young
    • Applied Microscopy
    • /
    • v.46 no.1
    • /
    • pp.51-57
    • /
    • 2016
  • The histology and anatomy of the olfactory organ in Luciogobius guttatus was investigated using a light microscopy and scanning electron microscopy. The paired olfactory organs in the dorsal part of the snout are situated in between the upper lip and the eyes. They consist of two nostrils, one anterior and the other posterior openings, and a single olfactory cavity. The anterior nostril, an incurrent opening, forms a short tubular structure from the skin. The posterior nostril, an excurrent opening, forms a circular structure opened to the exterior. The distributional pattern of the sensory epithelium is a continuous type. The sensory epithelium with numerous-motile cilia is made up of receptor cells, supporting cells, basal cells, and mucous cells. In contrast, the non-sensory epithelium is comprised of stratified epithelial cells and two types of mucous cells, acidic and neutral cells. The cilia number of the receptor cell is in range of 3 to 4 units. Such results in L. guttatus may reflect its ecological habit and microhabitat in the tidal zone with a periodic tide.

Histamine Signaling Pathway in Sensory Neurons is Similar to Bradykinin

  • Lee, Sang-Hee;Koo, Jae-Yeon;Kim, Sang-Sung;Lee, Jung-Youn;Cho, Ha-Won;Kim, Byung-Moon;Oh, Uh-Taek
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.192.1-192.1
    • /
    • 2003
  • Histamine is found in most tissues of the body and activates polymodal nociceptors via unmyelinated afferent C-fibres. We have demonstrated that bradykinin. acting at B2 bradykinin receptors. excites sensory nerve endings by activating capsaicin receptors via production of 12-lipoxygenase metabolites of arachidonic acid in dorsal root ganglion. Histamine is known to the activator of phospholipase A2- arachidonic acid pathway via a G-protein- coupled H1 receptor. (omitted)

  • PDF