• Title/Summary/Keyword: Sensorless algorithm

Search Result 293, Processing Time 0.03 seconds

A High-Performance Speed Sensorless Control System for Induction Motor with Direct Torque Control (직접 토크제어에 의한 속도검출기 없는 유도전동기의 고성능 제어시스템)

  • Kim, Min-Huei;Kim, Nam-Hun;Baik, Won-Sik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.1
    • /
    • pp.18-27
    • /
    • 2002
  • This paper presents an implementation of digital high-performance speed sensorless control system of an induction motor drives with Direct Torque Control(DTC). The system consists of closed loop stator flux and torque observer, speed and torque estimators, two hysteresis controllers, an optimal switching look-up table, IGBT voltage source inverter, and TMS320C31 DSP controller board. The stator flux observer is based on the combined current and voltage model with stator flux feedback adaptive control for wide speed range. The speed estimator is using the model reference adaptive system(MRAS) with rotor flux linkages for speed turning signal estimation. In order to prove the suggested speed sensorless control algorithm, and to obtain a high-dynamic robust adaptive performance, we have some simulations and actual experiments at low(20rpm) and high(1000rpm) speed areas. The developed speed sensorless system are shown a good speed control response characteristic, and high performance features using 2.2[kW] general purposed induction motor.

A Sensorless control system of Reluctance Synchronous Motor with Direct Torque Control (직접 토크제어에 의한 리럭턴스 동기 전동기의 센서리스 제어시스템)

  • Kim, Min-Huei;Kim, Nam-Hun;Baik, Won-Sik;Kim, Dong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.161-164
    • /
    • 2001
  • This paper presents a digital speed sensorless control system for Reluctance Synchronous Motor (RSM) drives with direct torque control (DTC). The system consist of stator flux observer, rotor speed estimator, torque estimator two hysteresis band controllers, an optimal switching look-up table. IGBT voltage source inverter, and TMS320C31DSP controller by using fully integrated control software. The stator flux observer is based on the combined voltage and current model with stator flux feedback adaptive control that inputs are current and voltage sensing of motor terminal with estimated rotor angle for wide speed range. The rotor speed is estimated by the observed stator flux-linkage space vector. The estimated rotor speed can be determinated by differentiation of the rotor position used only in the current model part of the flux observer for a low speed operating area. In order to prove the suggested speed sensorless control algorithm. There are some simulation and testing at actual experimental system. The developed digitally high- performance speed sensorless control system are shown a good speed control response characteristic results and high Performance features using 1.0Kw RSM.

  • PDF

Parameter Estimation for Vector Control of Induction Motors without Speed Sensors (속도센서 없는 유도전동기 백터제어 시스템의 파라메타 추정)

  • Kim, Sang-Uk;Kwon, Young-Gil;Kim, Young-Jo;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2088-2090
    • /
    • 1997
  • This paper consists of the speed sensorless vector control of induction motors with the estimation of rotor resistance. In the application of variable-speed induction motor drives, if an inaccurate rotor resistance is used because the rotor resistance can change due to skin effects and temperature variables, it is difficult to achieve a collect field orientation. In this paper, to overcome these difficulties adaptive algorithm is designed for rotor resistance identification. The proposed adaptive algorithm for rotor resistance estimation in the synchronous reference frame is applied by sliding mode current controller satisfing persistent excitation(PE) condition. Adaptive flux observer is here used for the purpose of estimating rotor flux and speed in the speed sensorless scheme. Computer simulations are carried out to verify the validity of the proposed algorithm.

  • PDF

The Estimation Algorithm Design of Hall Sensor Signal Considering Safety of BLDC Motor (브러시리스 직류전동기의 안전성을 고려한 Hall Sensor 신호 추정 알고리즘 설계)

  • Yoon, Yong-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.11
    • /
    • pp.1894-1899
    • /
    • 2016
  • In this paper, because the position sensor represents the important factor in BLDC (Brushless DC) motor drives, BLDC motor is necessary that the three Hall-sensors evenly be distributed around the stator circumference in case of the 3 phase motor. The Hall-sensor is set up in this motor to detect the main flux from the rotor. So the output signal from Hall-sensor is used to drive IGBT to control the stator winding current. However, in case of breakdown Hall sensor, we research that the estimation algorithm of Hall sensor signal to detect rotor position and for the speed feedback signals with BLDC motor whose six stator and two rotor designed. In addition, this paper presents a sensorless speed control of BLDC Motor using terminal voltage of the one phase. Rotor position information is extracted by indirectly sensing the back EMF from only one of the three terminal voltages for a three-phase BLDC motor.

A New Sensorless Vector Control Algorithm For Induction Motors (새로운 유도전동기 센서리스 벡터제어 알고리즘)

  • Park Keun-Sang;Kim Woo-Hyen;Choi Byeong-Tae;CHoi Youn-Ho;Kwon Woo-Hyen
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.213-216
    • /
    • 2002
  • This paper describes a new approach to estimate induction motor speed from terminal voltages and currents for speed-sensorless vector control. This algorithm is based on Model Reference Adaptive System(MRAS). The proposed technique is simple and robust to the variation of motor parameters. Specially, this algorithm is not affected by the variation of stator resistance and it does not require any pure integration at all. The validity of this new approach is proved by simulations.

  • PDF

Sensorless Control of SRM using Evoultion-Sliding-Mode Observer (진화 슬라이딩 모드 관측기를 이용한 SRM의 센서리스 제어)

  • Park, Jin-Hyun;Park, Han-Woong;Jun, Hyang-Sik;Jung, Kee-Haw;Choi, Young-Kiu
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2255-2257
    • /
    • 2001
  • This paper introduces a indirect rotor position and speed estimation algorithm for the SRM(switched reluctance motor) sensorless control, based on the sliding mode observer. The information of position and speed is generally provided by encoder or resolver. However, the position sensor not only adds complexity, cost, and size to the whole drive system, but also causes limitation for industrial applications. In this paper, in order to eliminate the position sensor, indirect position sensing method using sliding mode observer is used for SRM drives. And this observer parameters are optimized by evolutionary algorithm. PI controller is also optimized for the SRM to track precisely using evolutionary algorithm.

  • PDF

Fault Detection of BLDC Motor Based on Operating Characteristic (BLDC 전동기 운전 특성을 이용한 새로운 고장 검출 기법 구현)

  • Lee, Jung-Dae;Park, Byoung-Gun;Kim, Tae-Sung;Ryu, Ji-Su;Hyun, Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.325-327
    • /
    • 2007
  • This paper proposes a novel sensorless fault detection algorithm for a brushless DC(BLDC) motor drive system. This proposed method is configured without the additional sensor for fault detection and identification. The fault detection and identification are achieved by a simple algorithm using the operating characteristic of the BLDC motor. This proposed method can also be embedded into existing BLDC motor drive systems as a subroutine without excessive computational effort. The feasibility of a novel sensorless fault detection algorithm is validated in simulation.

  • PDF

Current sensorless MPPT for PV-AC module flyback inverter (PV-AC 모듈형 플라이백 인버터의 전류 센서리스 MPPT제어기법)

  • Choi, Bong-Yeon;Kim, Young-Ho;Ji, Young-Hyok;Lee, Tae-Won;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.49-50
    • /
    • 2012
  • Maximum power point tracking(MPPT) algorithm is needed in PV AC module power conditioning system because of the nonlinear current-voltage characteristics. Conventional MPPT algorithm is required to know PV-module output current and voltage. Thus, PV-AC module must have voltage and current sensor. In this paper, a current-sensorless MPPT algorithm, which uses only the voltage sensor, is presented for Flyback inverter.

  • PDF

Sensor less Speed Control of Induction Motor at Wide Speed Control Range Using High Frequency Voltage Signal Injection (고주파 전압 신호주입을 이용한 속도검출기가 없는 유도전동기의 광범위 속도 제어)

  • Son, Yo-Ch'an;Ha, Jung-Ik;Sul, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.182-185
    • /
    • 1998
  • This paper describes a field orientation control of an induction motor without any speed transducer and proposes a wide-range speed control strategy with the field orientation algorithm. The difference at impedances between the direct and quadrature axis at the injected signal is used for the sensorless field orientation control. But this algorithm has some limitations and should be supported by other method at high speed. In this paper, a sensorless speed control at an induction motor for wide speed range operation is proposed. The proposed algorithm is verified by experimental results.

  • PDF

Sensorless Vector Control of Induction Motor Using Fuzzy PI Controller (퍼지 PI제어기를 이용한 유도전동기 속도 센서리스 벡터제어)

  • 남상현;이재환;김대균;김길동;이승환;한경희
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.390-393
    • /
    • 1999
  • For high performance ac drives, the speed sensorless vector control and a speed control algorithm base on the Fuzzy PI controller have received increasing attention. A Fuzzy PI controller is used for robust and fast speed control and space vector modulation method is used for PWM wave generation in this proposed system. The computer simulation results show that the proposed controller are more excellent control characteristics than conventional PI controller in transient-state response.

  • PDF