• Title/Summary/Keyword: Sensor technology

Search Result 8,664, Processing Time 0.04 seconds

Monte Carlo Localization for Mobile Robots Under REID Tag Infrastructures (RFID 태그에 기반한 이동 로봇의 몬테카를로 위치추정)

  • Seo Dae-Sung;Lee Ho-Gil;Kim Hong-Suck;Yang Gwang-Woong;Won Dae-Hee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.1
    • /
    • pp.47-53
    • /
    • 2006
  • Localization is a essential technology for mobile robot to work well. Until now expensive sensors such as laser sensors have been used for mobile robot localization. We suggest RFID tag based localization system. RFID tag devices, antennas and tags are cheap and will be cheaper in the future. The RFID tag system is one of the most important elements in the ubiquitous system and RFID tag will be attached to all sorts of goods. Then, we can use this tags for mobile robot localization without additional costs. So, in this paper, the smart floor using passive RFID tags is proposed and, passive RFID tags are mainly used for identifying mobile robot's location and pose in the smart floor. We discuss a number of challenges related to this approach, such as tag distribution (density and structure), typing and clustering. When a mobile robot localizes in this smart floor, the localization error mainly results from the sensing range of the RFID reader, because the reader just ran know whether a tag is in the sensing range of the sensor. So, in this paper, we suggest two algorithms to reduce this error. We apply the particle filter based Monte Carlo localization algorithm to reduce the localization error. And with simulations and experiments, we show the possibility of our particle filter based Monte Carlo localization in the RFID tag based localization system.

Implementation of Integrated Platform of Face Recognition CCTV and Home IOT (안면인식 CCTV와 홈 IOT의 통합 플랫폼 구현)

  • Ahn, Eun-Mo;Kim, Dong-Hoi
    • Journal of Digital Contents Society
    • /
    • v.19 no.2
    • /
    • pp.393-399
    • /
    • 2018
  • As the existing face recognition CCTV and home IOT have each individual hardware component, they have a disadvantage that the measured results of their sensors and the CCTV can not be viewed on one screen at a time. In order to overcome the above disadvantages of existing CCTV and home IOT, this paper proposes an integrated platform which constitutes the CCTV and home IOT as one hardware component using Raspberry Pi and shows each result on one screen through Smartphone application. The proposed integrated platform CCTV and home IOT system is a system which can run the application as a Smartphone and check the sensor value measured by Raspberry Pi and the picture taken through the Pi camera. The implemented system measures temperature, humidity, gas, and dust, and implements face recognition technology on a screen shot through a Pi camera, allowing it to be seen at a glance with a Smartphone.

A Study on Vehicle to Road Tracking Methodology with Consideration of vehicle lateral dynamics (차량 횡방향 운동 방정식을 고려한 차대도로간 트래킹 기법)

  • Shin, Dongho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.6
    • /
    • pp.219-230
    • /
    • 2017
  • This paper proposes a vehicle to road tracking algorithm based on vision sensor by using EKF(Extended Kalman Filter). The lateral offset, heading angle, and curvature which are obtained from vehicle to road tracking might be used as inputs to steering controller of LKAS(Lane Keeping Assist System) or for the warning decision logic of LDWS(Lane Departure Warning System). To the end, in this paper, the yaw rate, steering angle, and vehicle speed as well as lane raw points together with considering of vehicle lateral dynamics are utilized to improve the exactness and convergence of the vehicle to road tracking. The proposed algorithm has been tested at a proving ground that consists of straight and curve sections and compared with GPS datum using DGPS-RTK equipment to show the feasibility of the proposed algorithm.

Delay-Tolerant Network Routing Algorithm for Periodical Mobile Nodes (주기적 이동 노드를 위한 Delay-Tolerant Network 라우팅 알고리즘)

  • Lee, Youngse;Lee, Gowoon;Joh, Hangki;Ryoo, Intae
    • Journal of Digital Contents Society
    • /
    • v.15 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • Delay-Tolerant Network (DTN) is an asynchronous networking technology that has been deployed for the networking environment in which steady communication paths are not available, and therefore it stores receiving data in a data storage and forward them only when the communication links are established. DTN can be applied to sensor networks and mobile ad-hoc network (MANET) as well as space communication that supports data transmissions among satellites. In DTN networking environments, it is very important to secure a scheme that has relatively low routing overhead and high reliability, so that it can enhance the overall routing speed and performance. In order for achieving efficient data transmissions among the nodes that have comparatively periodic moving patterns, this paper proposes a time information based DTN routing scheme which is able to predict routing paths. From the simulation results using Omnet++ simulation tools, it has been verified that the proposed time information based DTN routing algorithm shows satisfied levels of routing speed and routing reliability even with lower routing overheads.

Development of Home Training System with Self-Controlled Feedback for Stroke Patients (키넥트 센서를 이용한 자기통제 피드백이 가능한 가정용 훈련프로그램 개발)

  • Kim, Chang Geol;Song, Byung Seop
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.1
    • /
    • pp.37-45
    • /
    • 2013
  • Almost of stroke patients who experience aftereffects such as motor, sensory and cognitive disorders have to take some rehabilitation therapies. It is known that the consistent training for rehabilitation therapy in their home is more effective than rehabilitation therapy in hospital. A few home training programs were developed but these programs don't give any appropriate feedback messages to the client. Therefore, we developed a home training program which can provide appropriate feedback message to the clients using the Kinect sensor which can analyze user's 3-D dimensional motion. With this development, the client can obtain some feedback messages such as the knowledges of performance, results and self-controlled feedback. The program will be more effective than any existing programs.

Applicability of AE for the Prediction of Rock Slope Failure (암반비탈면 붕괴시 예측가능한 AE의 적용성에 관한 연구)

  • Lee, Dong-Keun;Kim, Yeon-Joong;Kim, Seok-Chun;Chun, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.1
    • /
    • pp.25-34
    • /
    • 2011
  • In general, many instrumentations of slope rely on theory or experience because on-site accessibility and long term instrumentation are difficult to conduct the instrumentation of slopes. Also the prediction of disaster is very difficult. Therefore experimental research was conducted about an effective method to predict collapse of slope and on-site applicability in this study. The collapse of slope was able to be predicted by applying AE sensor which we call WEAD to the failure criteria. The parameters of AE generated during the collapse of slope were secured through bending shear test. Test construction was applied to the slope with a history and a possibility of collapse. As a result, it is shown that AE parameters do not exceed the failure criterion and is found to be stable slopes. As the real symptoms of collapse did not appear, AE was found to have excellent applicability.

Real-time Streaming and Remote Control for the Smart Door-Lock System based on Internet of Things (스마트 도어록 시스템을 위한 IoT 기반의 실시간 스트리밍 및 원격 제어)

  • Lee, Sung-Won;Yu, Je-Hun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.6
    • /
    • pp.565-570
    • /
    • 2015
  • In this paper, we implemented the smart door lock system that control remotely devices using the concept of internet of things. Internet of things is intelligent system that can help devices to communicate with people and devices. And recently internet of things is getting attention because of advance of hardware technology and big data. The smart doorlock system based on internet of things used raspberry pi, sensor and doorlock. Using the smart phone, doorlock can be controlled from the raspberry pi server. And the user can identify some people that is in front of doorlock. also user can check around of doorlock in realtime using the raspberry pi camera.

Nanostructured Metal Organic Framework Modified Glassy Carbon Electrode as a High Efficient Non-Enzymatic Amperometric Sensor for Electrochemical Detection of H2O2

  • Naseri, Maryam;Fotouhi, Lida;Ehsani, Ali
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.28-36
    • /
    • 2018
  • Metal-organic frameworks have recently been considered very promising modifiers in electrochemical analysis due to their unique characteristics among which tunable pore sizes, crystalline ordered structures, large surface areas and chemical tenability are worth noting. In the present research, $Cu(btec)_{0.5}DMF$ was electrodeposited on the surface of glassy carbon electrode at room temperature under cathodic potential and was initially used as the active materials for the detection of $H_2O_2$. The cyclic voltammogram of $Cu(btec)_{0.5}DMF$ modified GC electrode shows distinct redox peaks potentials at +0.002 and +0.212 V in 0.1 M phosphate buffer solution (pH 6.5) corresponding to $Cu^{(II)}/Cu^{(I)}$ in $Cu(btec)_{0.5}DMF$. Acting as the electrode materials of a non-enzymatic $H_2O_2$ biosensor, the $Cu(btec)_{0.5}DMF$ brings about a promising electrocatalytic performance. The high electrocatalytic activity of the $Cu(btec)_{0.5}DMF$ modified GC electrode is demonstrated by the amperometric response towards $H_2O_2$ reduction with a wide linear range from $5{\mu}M$ to $8000{\mu}M$, a low detection limit of $0.865{\mu}M$, good stability and high selectivity at an applied potential of -0.2 V, which was higher than some $H_2O_2$ biosensors.

Study on the 3D Assembly Inspection of Two-Step Variable Valve Lift Modules Using Laser-Vision Technology (레이저 비전을 이용한 2단 가변밸브 리프트 모듈의 3D 조립검사에 대한 연구)

  • Nguyen, Huu-Cuong;Kim, Do-Joong;Lee, Byung-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.10
    • /
    • pp.949-957
    • /
    • 2017
  • A laser-vision-based height measurement system is developed and implemented for the inspection of two-step variable valve lift module assemblies. The proposed laser-vision sensor module is designed based on the principle of laser triangulation. This paper summarizes the work on 3D point cloud data collection and height difference measurements. The configuration of the measurement system and the proposed height measurement algorithm are described and analyzed in detail. Additional measurement experiments on the height differences of valves and lash adjusters of a two-step variable valve lift module were implemented repeatedly to evaluate the accuracy and repeatability of the proposed measurement system. Experimental results show that the proposed laser-vision-based height measurement system achieves high accuracy, repeatability, and stabilization for the inspection of two-step variable valve lift module assemblies.

A Hybrid Navigation System for Underwater Unmanned Vehicles, Using a Range Sonar (초음파 거리계를 이용한 무인잠수정의 수중 복합 항법시스템)

  • LEE PAN-MOOK;JEON BONG-HWAN;KIM SEA-MOON;LEE CHONG-MOO;LIM YONG-KON;YANG SEUNG-IL
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.4 s.59
    • /
    • pp.33-39
    • /
    • 2004
  • This paper presents a hybrid underwater navigation system for unmanned underwater vehicles, using an additional range sonar, where the navigation system is based on inertial and Doppler velocity sensors. Conventional underwater navigation systems are generally based on an inertial measurement unit (IMU) and a Doppler velocity log (DVL), accompanying a magnetic compass and a depth sensor. Although the conventional navigation systems update the bias errors of inertial sensors and the scale effects of DVL, the estimated position slowly drifts as time passes. This paper proposes a measurement model that uses the range sonar to improve the performance of the IMU-DVL navigation system, for extended operation of underwater vehicles. The proposed navigation model includes the bias errors of IMU, the scale effects of VL, and the bias error of the range sonar. An extended Kalman filter was adopted to propagate the error covariance, to update the measurement errors, and to correct the state equation, when the external measurements are available. To illustrate the effectiveness of the hybrid navigation system, simulations were conducted with the 6-d.o.f. equations of motion of an AUV in lawn-mowing survey mode.