• Title/Summary/Keyword: Sensor scanning

Search Result 449, Processing Time 0.026 seconds

Design of Two Zoom Infrared Camels using Noise Uniformity Correction by Shutter Lens (셔터렌즈에 의한 검출기 불균일 보정을 적용한 이중배율 적외선 카메라 설계)

  • Ahn, Gyou-Bong;Kim, Seo-Hyun;Jung, Jae-Chul;Jo, Mun-Shin;Kim, Chang-Woo;Kim, Hyun-Sook
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.2
    • /
    • pp.135-141
    • /
    • 2007
  • This paper describes the design technology for a third generation thermal imaging system, which is more compact than before, using a $320\times240$ mid-IR focal plane detector. The third generation non-scanning thermal imaging system was constructed as a compact thermal imaging module as a reconnaissance, surveillance and navigation sensor for helicopter and infantry vehicles in the $1980's\sim1990's$ and now, we designed a new compact infrared camera and studied a new type of non-uniformity correction lens fer this camera.

Enhanced Gas Sensing Properties of Pt-Loaded TeO2 Nanorods

  • Jin, Chang-Hyun;Park, Sung-Hoon;Kim, Hyun-Su;Lee, Chong-Mu
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1851-1855
    • /
    • 2012
  • The $NO_2$ gas sensing properties of multiple-networked, Pt-loaded $TeO_2$ nanorod sensors were examined. Scanning electron microscopy revealed nanowires with diameters of 50-100 nm and lengths of a few micrometers. Transmission electron microscopy and X-ray diffraction showed that the nanrods were tetragonal-structured, single crystal $TeO_2$. The Pt-loaded $TeO_2$ nanorod sensors exhibited sensitivities of 11.00, 10.26, 11.23 and 11.97% at $NO_2$ concentrations of 10, 50, 100 and 200 ppm, respectively, at $300^{\circ}C$. These sensitivities were more than 10 times higher than those of bare-$TeO_2$ nanorod sensors. The response times of the sensors were 310, 260, 270 and 230 sec at $NO_2$ concentrations of 10, 50, 100 and 200 ppm, respectively. The recovery times of the Pt-loaded $TeO_2$ nanorods were 390, 330, 335, and 330 sec at $NO_2$ concentrations of 10, 50, 100 and 200 ppm, respectively. The origin of the enhanced sensing properties of the $TeO_2$ nanorods by Pt loading is discussed.

The Development of High Resolution Film Scanner Using DSP (DSP를 이용한 고해상도 스캐너 개발)

  • 김태현;최은석;백중환
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.149-152
    • /
    • 2000
  • A scanner is an output device that scans documents, photographs, films etc, and convert them to digital data. Especially, a film scanner is used for scanning negative/positive films. In this paper, we design step motor control part, image sensor part, and Aか converter part which are components of the scanner and use DSP for fast signal processing. We also design the interface circuits using EPLD between these peripherals and DSP. The PC interface circuits between scanner and PC are designed by using parallel port to control and transfer the scanned data from scanner to PC. For 35mm film, we design hardwares which obtain high resolution more than 9 million pixels (horizontal resolution is 3835 and vertical resolution is 2592).

  • PDF

Ohmic contact formation of single crystalline 3C-SiC for high temperature MEMS applications (초고온 MEMS용 단결정 3C-SiC의 Ohmic Contact 형성)

  • Chung, Gwiy-Sang;Chung, Su-Yong
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.131-135
    • /
    • 2005
  • This paper describes the ohmic contact formation of single crystalline 3C-SiC thin films heteroepitaxially grown on Si(001) wafers. In this work, a TiW (Titanium-tungsten) film as a contact matieral was deposited by RF magnetron sputter and annealed with the vacuum and RTA (rapid thermal anneal) process respectively. Contact resistivities between the TiW film and the n-type 3C-SiC substrate were measured by the C-TLM (circular transmission line model) method. The contact phases and interface the TiW/3C-SiC were evaulated with XRD (X-ray diffraction), SEM (scanning electron microscope) and AES (Auger electron spectroscopy) depth-profiles, respectively. The TiW film annealed at $1000^{\circ}C$ for 45 sec with the RTA play am important role in formation of ohmic contact with the 3C-SiC substrate and the contact resistance is less than $4.62{\times}10^{-4}{\Omega}{\cdot}cm^{2}$. Moreover, the inter-diffusion at TiW/3C-SiC interface was not generated during before and after annealing, and kept stable state. Therefore, the ohmic contact formation technology of single crystalline 3C-SiC using the TiW film is very suitable for high temperature MEMS applications.

Influence of Growth Conditions on the Structural and Atomic Fractional Properties of $Hg_{1-x}Cd_xTe$ Films Electrodeposited onto Titanium and ITO glass (티타늄과 ITO유리기판에 전착법으로 성장된 $Hg_{1-x}Cd_xTe$ 박막과 성장 조건이 결정구조 및 성분 조성비에 미치는 영향)

  • Choi, C.T.
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.80-85
    • /
    • 2001
  • $Hg_{1-x}Cd_xTe$(MCT) thin films were grown onto ITO glass and titanium plate by stationary cathodic electrodeposition in aqueous solution contained $CdSO_4$, $TeO_2$, and $HgCl_2$. During deposition two main fabrication parameters were taken into account deposition potential and growth temperature. MCT films deposited by varying two parameters were studied by X-ray diffraction, electron probe micro analyser(EPMA) and scanning electron microscope measurements. It was shown by XRD and EPMA measurements that the structure of MCT films was zinc blonde and the composition of MCT films can be controlled with the deposition potential.

  • PDF

Effect of Hg-ambient annealing on Hg0.7Cd0.3Te thin films for IR detector (Hg 분위기 열처리에 따른 적외선 감지용 Hg0.7Cd0.3Te 박막의구조적 특성 변화)

  • Kim, Kwang-Chon;Lee, Cha-Hyun;Choi, Won-Chel;Kim, Hyun-Jae;Kim, Jin-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.398-402
    • /
    • 2010
  • The liquid phase epitaxy(LPE) method was widely used to growth of mercury cadmium telluride(MCT) thin films. However, this method lead to Hg-vacancies in MCT thin film, because Hg has high vapor pressure at this temperature range. This is a well known defect in HgCdTe grown by LPE method. In this study, we report the development of techniques for improving the crystalline quality and controlling the composite uniformity of HgCdTe thin films using high- pressure Hg-ambient annealing method. As a result, we achieved the improvement of the composite uniformity of HgCdTe thin films. It was observed by the high angle annular dark field scanning TEM(HAADF-STEM) analysis. Moreover, new HgTe phase and a shrinking of lattice fringe were observed.

Ethanol Gas Sensing Properties of In2O3 Nanowires Coated with Co3O4 Nanoparticles (Co3O4 나노입자가 코팅된 In2O3 나노와이어의 에탄올 가스 검출 특성)

  • Park, Sunghoon;Kang, Wooseung
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.1
    • /
    • pp.75-80
    • /
    • 2016
  • $In_2O_3$ nanowires were coated with $Co_3O_4$ nanoparticles to investigate the improvement of ethanol gas sensing performance compared with as-synthesized $In_2O_3$ nanowires. Scanning electron microscopy showed that the nanowires synthesized by VLS mechanism had diameters and lengths of approximately 50-100 nm and a few micrometers, respectively. $Co_3O_4$ nanoparticles produced by hydrothermal method was in the size range of a few to a few tens nm. As-synthesized and $Co_3O_4$ nanoparticles coated $In_2O_3$ nanowires sensors exhibited responses of 1.96% and 4.57%, respectively for the ethanol gas concentration of 200 ppm at $200^{\circ}C$. The underlying mechanism for the improved responses of $Co_3O_4$ nanoparticles coated $In_2O_3$ nanowires sensors is discussed.

Antarctic Sea Ice Distribution from Integrated Microwave Sensings

  • Hwang, Jong-Sun;Yoon, Ho-Il;Min, Kyung-Duck;Kim, Jeong-Woo;Hong, Sung-Min
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.633-633
    • /
    • 2002
  • We investigated the distributions of sea ice using various microwave remote sensing techniques in the part of Drake passage, Antarctica, between the area 45-75$^{\circ}$W and 55-66$^{\circ}$S. We used Topex/Poseidon(T/P) radar altimeter, ERS-1 altimeter, ERS-2 scatterometer, Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR), and DMSP Special Sensor Microwave/Imager(SSM/I) data. The sea ice distributions were estimated between May and Jun., 1995 and Oct. and Nov., 1998. The two altimeter measurements (T/P and ERS-1) showed good coherence with the results from the radiometer data in the given period when the ice concentration of 20% and greater was selected. The scatterometer data also showed good correlation with altimetry-implied sea ice surface. The maximum and minimum values of sea ice distribution were appeared in Aug. and Feb., respectively. In general, the sea ice distributions estimated from radar altimeter, radioneter, and scatterometer are well correlated.

  • PDF

Atomic Force Microscopy Force Mapping Application in Biomedical Research (원자현미경의 나노 힘 측정을 이용한 생의학 연구에의 응용)

  • Cho S.J.;Lee D.J.;Kim E.P.;Lee D.R.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.77-80
    • /
    • 2005
  • Local probe techniques such as scanning probe microscopy (SPM) or atomic force microscopy (AFM) extended our perception into ultra small world. Specially, the sense of touching was extended by AFM into the micro- and nanoworld and has provided complementary new insights of the microscopic world. In addition, touching objects is an essential step before trying to manipulate things. SPM as a touch sensor not only measure the mechanical properties but also detect different properties such as magnetic, electrical, ionic, thermal, chemical and biophysical properties in nanoscale and even less. Obtaining biophysical measurements, monitoring dynamics and processes together with high-resolution imaging of the biomolecules and cells with rather simpler sample preparation than any other techniques give great attractions to the scientists experimenting with biological samples. Among the many AFM capabilities we will specifically introduce the force plot which is used to measure tip-sample interactions and its application this time.

  • PDF

Optical Properties of Mid-infrared Transparent ZnS Ceramics with Different Molar Ratio of S/Zn (S/Zn의 몰비에 따른 중적외선 투과용 ZnS 세라믹스의 소결과 광학적 특성)

  • Yeo, Seo-Yeong;Park, Buem-Keun;Kim, Chang-Il;Paik, Jong-Hoo
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.256-261
    • /
    • 2019
  • In this study, mid-infrared transparent zinc sulfide (ZnS) ceramics were fabricated through hydrothermal synthesis with different molar ratios of S/Zn (S/Zn = 0.8, 1.0, 1.2, 1.4, and 1.6). The ZnS ceramics were sintered at a relatively low temperature of $850^{\circ}C$ to prevent the occurrence of the hexagonal phase featuring optical anisotropy. The phase composition, microstructure, and optical properties of the ZnS ceramics were subsequently investigated by employing X-ray diffraction, scanning electron microscopy, and Fouriertransform infrared spectroscopy. The results obtained indicate that the ZnS nanoparticles feature the cubic phase, without the hexagonal phase. Moreover, with increasing S, the crystallinity and particle size of the ZnS nanoparticles increased. The crystallinity and density of the ZnS ceramics improved when the molar ratio of S was higher than the molar ratio of Zn, thereby enhancing the transmittance. Furthermore, the ZnS ceramic with an S/Zn value of 1.2 was found to exhibit the highest transmittance of approximately 69% owing to the reduced occurrence of the hexagonal phase and a high density of 99.8%.