• Title/Summary/Keyword: Sensor resistance

Search Result 855, Processing Time 0.028 seconds

Study on the Effect of the Electrode Structure of an ITO Nanoparticle Film Sensor On Operating Performance (ITO Nanoparticle Film을 이용한 센서의 전극 구조가 동작 성능에 미치는 영향에 대한 연구)

  • An, Sangsu;Noh, Jaeha;Lee, Changhan;Lee, Sangtae;Seo, Dongmin;Lee, Moonjin;Chang, Jiho
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.90-95
    • /
    • 2022
  • The effect of the structure of an ITO nanoparticle film sensor on its performance was studied. A printed ITO film (P-ITO film) was fabricated on a flexible polyethylene terephthalate (PET) substrate, and the contact resistance of the electrode and sensor response change were clarified according to the detection position. The contact resistance between Ag and P-ITO was observed to be -204.4 Ω using the transmission line method (TLM), confirming that a very good ohmic contact is possible. In addition, we confirmed that the contact position of the analyte had a significant influence on the response of the sensor. Based on these results, the performance of the four types of sensors was compared. Consequently, we observed that 1) optimizing the resistance of the printed film, 2) optimizing the electrode structure and analyte input position, and 3) optimizing the electrode area are very important for fabricating a metal oxide nanoparticle (MONP) sensor with optimal performance.

A Readout IC Design for the FPN Reduction of the Bolometer in an IR Image Sensor

  • Shin, Ho-Hyun;Hwang, Sang-Joon;Jung, Eun-Sik;Yu, Seung-Woo;Sung, Man-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.5
    • /
    • pp.196-200
    • /
    • 2007
  • In this paper, we propose and discuss the design using a simple method that reduces the fixed pattern noise(FPN) generated on the amorphous Si($\alpha-Si$) bolometer. This method is applicable to an IR image sensor. This method can also minimize the size of the reference resistor in the readout integrated circuit(ROIC) which processes the signal of an IR image sensor. By connecting four bolometer cells in parallel and averaging the resistances of the bolometer cells, the fixed pattern noise generated in the bolometer cell due to process variations is remarkably reduced. Moreover an $\alpha-Si$ bolometer cell, which is made by a MEMS process, has a large resistance value to guarantee an accurate resistance value. This makes the reference resistor be large. In the proposed cell structure, because the bolometer cells connected in parallel have a quarter of the original bolometer's resistance, a reference resistor, which is made by poly-Si in a CMOS process chip, is implemented to be the size of a quarter. We designed a ROIC with the proposed cell structure and implemented the circuit using a 0.35 um CMOS process.

A Study of B-implanted n Type Si Epi Resistor for the Fabrication of Thermal Stable Pressure Sensor (열적 안정한 압력센서 제작을 위한 보론(B) 이온 주입 n형 Si 에피 전극 연구)

  • Choi, Kyeong-Keun;Kang, Moon Sik
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.40-46
    • /
    • 2018
  • In this paper, we focus on optimization of a boron ($^{11}B$)-implanted n type Si epi substrate for obtaining near-zero temperature coefficient of resistance (TCR) at temperature range from 25 to $125^{\circ}C$. The $^{11}B$-implantation on the N type-Si epi substrate formed isolation from the rest of the N-type Si by the depletion region of a PN junction. The TCR increased as the temperature of rapid thermal anneal (RTA) was increased at the temperature range from $900^{\circ}C$ to $1000^{\circ}C$ for the $p^+$ contact with implantation at dose of $1E16/cm^2$, but sheet resistance of this film was decreased. After the optimization of anneal process condition, the TCR of $1126.7{\pm}30.3$ (ppm/K) was obtained for the $p^-$ resistor-COB package chips contained $p^+$ contact with the implantation of $5E14/cm^2$. This shows the potential of the $^{11}B$-implanted n type Si epi substrate as a resistor for pressure sensor in thermal stable environment applications..

Characterization of VO2 thick-film critical temperature sensors by heat treatment conditions (열처리조건에 따른 VO2 후막 급변온도센서의 특성연구)

  • Song, K.H.;Yoo, K.S.
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.407-412
    • /
    • 2007
  • For $VO_{2}$ sensors applicable to temperature measurement by using the nature of semiconductor to metal transition, the crystallinity, microstructure, and temperature vs. resistance characteristics were investigated systematically as a function of the annealing condition. The starting materials, vanadium pentoxide ($V_{2}O_{5}$) powders, were mixed with vehicle to form paste. This paste was screen-printed on $Al_{2}O_{3}$ substrates and then $VO_{2}$ thick films were heat-treated at $450^{\circ}C$ to $600^{\circ}C$, respectively, for 1 hr in $N_{2}$ gas atmosphere for the reduction. As results of the temperature vs. resistance property measurements, the electrical resistance of the $V_{2}O_{5}$ sensor in phase transition range was decreased by $10^{3.9}$ order. The presented critical temperature sensor could be used in fire-protection and control systems.

Mass Sensing Properties of Fatty Acids System LB Films (공진주파수와 저항을 이용한 지방산 LB막의 질량감지 특성)

  • 진철남;김경환;강현욱;권영수;장정수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.419-422
    • /
    • 1998
  • There are lots of researches which are using quratz crystal in order to apply it to sensors, for example, mass detect sensor, humidity sensor, gas sensor, etc. We tried to apply quartz crystal to the sensor using the resonant frequency and the resistance properties. Four kinds of fatty acid which are having the same head group are coated at the surface of quartz crystal, the shift of the resonant frequency and the resistance are observed according to length of the tail group. Myristic acid$(C_{14})$, palmitic acid$(C_16)$, stearic acid$(C_{18})$, and arachidic acid$(C_{20})$ were coated by Langmuir-Blodgett(LB) technique. As results, the resonant frequency shift was observed linearly. However, there are some difference compared with Sauerbrey's equation. It can be explained by the effect of the temperature property and/or humidity. On the other hand, the shift of the resistance was observed nonlinearly.

  • PDF

Fabrication of micro heaters with uniform-temperature area on poly 3C-SiC membrane and its characteristics (다결정 3C-SiC 멤브레인 위에 균일한 온도분포를 갖는 마이크로 히터의 제작과 그 특성)

  • Chung, Gwiy-Sang;Jeong, Jae-Min
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.349-352
    • /
    • 2009
  • This paper describes the fabrication and characteristics of micro heaters built on AlN($0.1{\mu}m$)/3C-SiC($1{\mu}m$) suspended membranes by surface micromachining technology. In this work, 3C-SiC and AlN films are used for high temperature environments. Pt thin film was used as micro heaters and temperature sensor materials. The resistance of temperature sensor and the power consumption of micro heaters were measured and calculated. The heater is designed for operating temperature up to about $800^{\circ}C$ and can be operated at about $500^{\circ}C$ with a power of 312 mW. The thermal coefficient of the resistance(TCR) of fabricated Pt resistance of temperature detector(RTD)'s is 3174.64 ppm/$^{\circ}C$. A thermal distribution measured by IR thermovision is uniform on the membrane surface.

Load Resistance Influence of Magnetoelectric Characteristics on NiZnFe2O4+PZT Composites for Magnetoelectric Sensors

  • Ryu, Ji-Goo;Chung, Su-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.379-386
    • /
    • 2013
  • The influences of the load resistance $R_L$ on the magnetoelectric (ME) characteristics of $NiZnFe_2O_4+PZT$ composite were investigated in the non-resonance frequency range. The ME coefficient peak increases with increasing $R_L$, but the frequency indicating the ME coefficient peak decreases with increasing $R_L$. The maximum output power peak is approximately $9.3{\times}10^{-10}mW/Oe$ near $R_L=3.3M{\Omega}$ at f=280 Hz, and the ME coefficient seems to be saturated at $R_L>20M{\Omega}$. This frequency shift effect of $R_L$ shows that the frequency range for an ME sensor application can be modulated with the appropriate value of $R_L$. The ME output voltage has a good linear response to the ac field Hac and shows fair stability over a range of temperatures. The measured non-linearity of this sample is approximately 0.8%. This sample will allow for a low-strength magnetic ac-field sensor. The result from this sample will serve as basic data for a signal-processing circuit system.

Averaging Current Adjustment Technique for Reducing Pixel Resistance Variation in a Bolometer-Type Uncooled Infrared Image Sensor

  • Kim, Sang-Hwan;Choi, Byoung-Soo;Lee, Jimin;Lee, Junwoo;Park, Jae-Hyoun;Lee, Kyoung-Il;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.357-361
    • /
    • 2018
  • This paper presents an averaging current adjustment technique for reducing the pixel resistance variation in a bolometer-type uncooled infrared image sensor. Each unit pixel was composed of an active pixel, a reference pixel for the averaging current adjustment technique, and a calibration circuit. The reference pixel was integrated with a polysilicon resistor using a standard complementary metal-oxide-semiconductor (CMOS) process, and the active pixel was applied from outside of the chip. The averaging current adjustment technique was designed by using the reference pixel. The entire circuit was implemented on a chip that was composed of a reference pixel array for the averaging current adjustment technique, a calibration circuit, and readout circuits. The proposed reference pixel array for the averaging current adjustment technique, calibration circuit, and readout circuit were designed and fabricated by a $0.35-{\mu}m$ standard CMOS process.

Position estimation and control of SMA actuators based on electrical resistance measurement

  • Song, Gangbing;Ma, Ning;Lee, Ho-Jun
    • Smart Structures and Systems
    • /
    • v.3 no.2
    • /
    • pp.189-200
    • /
    • 2007
  • As a functional material, shape memory alloy (SMA) has attracted much attention and research effort to explore its unique properties and its applications in the past few decades. Some of its properties, in particular the electrical resistance (ER) based self-sensing property of SMA, have not been fully studied. Electrical resistance of an SMA wire varies during its phase transformation. This variation is an inherent property of the SMA wire, although it is highly nonlinear with hysteresis. The relationship between the displacement and the electrical resistance of an SMA wire is deterministic and repeatable to some degree, therefore enabling the self-sensing ability of the SMA. The potential of this self-sensing ability has not received sufficient exploration so far, and even the previous studies in literature lack generality. This paper concerns the utilization of the self-sensing property of a spring-biased Nickel-Titanium (Nitinol) SMA actuator for two applications: ER feedback position control of an SMA actuator without a position sensor, and estimation of the opening of a SMA actuated valve. The use of the self-sensing property eliminates the need for a position sensor, therefore reducing the cost and size of an SMA actuator assembly. Two experimental apparatuses are fabricated to facilitate the two proposed applications, respectively. Based on open-loop testing results, the curve fitting technique is used to represent the nonlinear relationships between the displacement and the electrical resistance of the two SMA wire actuators. Using the mathematical models of the two SMA actuators, respectively, a proportional plus derivative controller is designed for control of the SMA wire actuator using only electrical resistance feedback. Consequently, the opening of the SMA actuated valve can be estimated without using an extra sensor.

Magnetic Field Sensor by Using Magnetic Effect in YBaCO Superconductor (자기적 성질을 응용한 YBaCuO계 초전도 자기센서)

  • 이상헌
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.6
    • /
    • pp.491-498
    • /
    • 2001
  • The relationship between electrical properties of YBaCuO superconductor and externally applied magnetic field was studied to develop a magnetic field apolarity sensor. The electrical resistance of the superconductor was increased by applying external magnetic field and even after removal of the magnetic field. The behavior was related to the magnetic flux trapped in the superconductor, which penetrates through the materials by the external magnetic field. Some portion of the superconductor was changed to a normal state by the trapped magnetic flux. The appearance of the normal state yielded to enhance the electrical resistance. Electrical characteristics of the superconductor with trapped magnetic flux were extremely sensitive to the external magnetic field and showed different responses depending on the direction of the magnetic field. Considering the observed properties of the superconductor with trapped magnetic flux, a magnetic sensor was fabricated to detect simultaneously both the intensity and the direction of the magnetic field.

  • PDF