• Title/Summary/Keyword: Sensor resistance

Search Result 861, Processing Time 0.028 seconds

A study on the Thermopneumatic Actuator with Phase Change for Micro Pump (상변화를 이용한 열공압형 마이크로 펌프용 액츄에이터 성능에 관한 연구)

  • Park, S.;Hwang, J.Y.;Lee, S.;Kang, K.;Kang, H.;Jang, J.;Lee, H.;Kang, S.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.425-428
    • /
    • 2006
  • Recently, Direct Methanol Fuel Cell (DMFC) for portable devices has been received much attention because DMFC has a possibility of higher energy density than electrical batteries and smaller size than other fuel cells. This paper presents the fabrication and test of a thermopneumatic microactuator with a phase change for DMFC. A microactuator consists of an inlet an outlet a chamber, a heater and a sensor of resistance temperature detector(RTD). The micoractuator is fabricated by the spin-coating process, the lithograph process, the deep RIE process and so on. The total size of microactuator is $20{\times}20{\times}0.53mm^3$. When the current is applied, the heater heats liquid in chamber. As a result the liquid vaporizes. The response of temperature in the chamber was measured using thermocouple The changed temperature is $3^{\circ}C$ for 5 sec at 0.032W.

  • PDF

A Numerical Study on Natural Convection Between Skin and Fabrics (Phoenics를 이용한 옷감의 종류 및 두께의 변화에 따른 열전달 특성의 수치 해석적 연구)

  • 홍지명
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.19 no.1
    • /
    • pp.142-148
    • /
    • 1995
  • In this study, FVM (Finite Volume Method) which is one of the 2-dimensional numerical approach has been conducted to anticipate the temperature distribution between skin and clothes by the change of air temperature and fabric characteristics including fabric thickness. Several experimental works have been done to understand the thermal insulation effect (If fabrics on a human body by measuring the averaged temperature in the air layer between skin and clothes or by measuring the thermal resistance of fabrics. However, the formal method is inconvenient to measure the temperature distribution in the air layer to evaluate the insulation rate of the clothes on the skin because the real size of the clearance between skin and the clothes is too small to place the temperature sensor, and in the Tatter method the relationship between human body and the fabrics are ignored. However, the numerical method will be very effective and economical way to evaluate the insulation efficiency of clothes when the computational result is in the reliable range. As the result of this study, the temperature change in the sir layer between skin and clothes was linear to the fabric thickness and this result coincides with many previous experimental results. Moreover, it is possible to predict the optimum fabric thickness for the best thermal insulation in the air layer between skin and clothes.

  • PDF

Effect of Crystal Structures on the Sensing Properties of Nanophase $SnO_2$ Gas Sensor (나노상 $SnO_2$ 가스센서에서 센서검지특성에 미치는 결정구조의 영향)

  • 안재평;김선호;박종구;허무영
    • Journal of Powder Materials
    • /
    • v.8 no.2
    • /
    • pp.98-103
    • /
    • 2001
  • Metallic tin powder with diameter less than 50 nm was synthesized by inert gas condensation method and subsequently oxidized to tin oxide ($SnO_2$) along the two heat-treatment routes. The $SnO_2$ powder of single phase with a tetragonal structure was obtained by the heat-treatment route with intermediate annealing step-wise oxidation, whereas the $SnO_2$ powder with mixture of orthorhombic and tetragonal phases was obtained by the heat-treatment route without intermediate annealing (direct oxidation). $SnO_2$ gas sensors fabricated from the nano-phase $SnO_2$ powders were investigated by structural observations as well as measurement of electrical resistance. The $SnO_2$ gas sensors fabricated from the mixed-phase powder exhibited much lower sensitivity against $H_2$ gas than those fabricated from the powder of tetragonal phase. Reduced sensitivity of gas sensors with the new orthorhombic phase was attributed to detrimental effects of phase boundaries between orthorhombic and tetragonal phases and many twin boundaries on the charge mobility.

  • PDF

Analysis of Sensing Mechanisms in a Gold-Decorated SWNT Network DNA Biosensor

  • Ahn, Jinhong;Kim, Seok Hyang;Lim, Jaeheung;Ko, Jung Woo;Park, Chan Hyeong;Park, Young June
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.2
    • /
    • pp.153-162
    • /
    • 2014
  • We show that carbon nanotube sensors with gold particles on the single-walled carbon nanotube (SWNT) network operate as Schottky barrier transistors, in which transistor action occurs primarily by varying the resistance of Au-SWNT junction rather than the channel conductance modulation. Transistor characteristics are calculated for the statistically simplified geometries, and the sensing mechanisms are analyzed by comparing the simulation results of the MOSFET model and Schottky junction model with the experimental data. We demonstrated that the semiconductor MOSFET effect cannot explain the experimental phenomena such as the very low limit of detection (LOD) and the logarithmic dependence of sensitivity to the DNA concentration. By building an asymmetric concentric-electrode model which consists of serially-connected segments of CNTFETs and Schottky diodes, we found that for a proper explanation of the experimental data, the work function shifts should be ~ 0.1 eV for 100 pM DNA concentration and ~ 0.4 eV for $100{\mu}M$.

Fabrication and Characterization of CdSe/ZnS-QDs Incorporated Microbeads for Ultra-sensitive Sensor Applications (양자점을 이용한 고감도 마이크로 비드의 제조 및 특성)

  • Lee, Dong-Sup;Lee, Jong-Chul;Lee, Jong-Heun;Koo, Eun-Hae
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.189-194
    • /
    • 2010
  • Compared with organic fluorophores, semiconductor quantum dots (QDs) have the better properties such as photostability, narrow emission spectra coupled to tunable photoluminescent emissions and exceptional resistance to both photo bleaching and chemical degradation. In this work, CdSe/ZnS QDs nanobeads were prepared by the incorporation of CdSe/ZnS QDs with mesoporous silica to use as the optical probe for detecting toxic and bio- materials with high sensitivity, CdSe/ZnS core/shell QDs were synthesized from the precursors such as CdO and zinc stearate with the lower toxicity than pyrotic precursors. The QD-nanobeads were characterized by transmission electron microscopy, FL microscopy, UV-Vis and PL spectroscopy, respectively.

Studies on the Sensing Charcteristics of Carbon-monoxide Using the Maghemite (Maghemite를 이용한 일산화탄소 감지 특성에 관한 연구)

  • 박영구
    • Journal of Environmental Health Sciences
    • /
    • v.21 no.4
    • /
    • pp.24-31
    • /
    • 1995
  • Gas sensing element, $\alpha-Fe_2O_3$ was synthesized by dehydration, reduction, and oxidation of $\alpha-FeOOH$, which was synthesized with $FeSO_4\cdot 7H_2O$ and NaOH. They were produced as a bulk-type, a thick film-type. Then, their responses and mechanisms of response to the gas of carbon monoxide were studied. The qualities of gas sefising elements are decided by the structure and the relative surface area. In the process of $\alpha-FeOOH$ synthesis, the effects of reaction conditions as the equivalent ratio, on the structure and the relative surface area of gas sensing element were observed. The changes of the structure were measured with XRD, SEM,TG-DTA and BET. The resistance changes of the synthesized gas sensor in the air were measured. The response ratio were also measured for the changes of working temperature and gas concentration. As a result of analysis with XRD, it was confirmed that the the best conditions for the synthesis of $\alpha-FeOOH$ were equivalent ratio 0.65. The thick film-type element of $\gamma-Fe_2O_3$ responded more quickly than the bulk-type did. The structure and the relative surface area of the $\rho-FeOOH$ were confirmed as the important factors deciding gas response charcteristics.

  • PDF

Nondestructive Sensing Evaluation of Electrospun PVDF Fiber and Carbon Nanotube/Epoxy Composites Using Electro-Micromechanical Technique (Electro-Micromechanical 시험법을 이용한 Electrospun PVDF Fiber 및 CNT 강화 Epoxy 복합재료의 비파괴 감지능 평가)

  • Jung, Jin-Gyu;Kim, Sung-Ju;Park, Joung-Man
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.153-156
    • /
    • 2005
  • Nondestructive sensing of electrospun PYDF web and multi-wall carbon nanotube (MWCNT)/epoxy composites were investigated using electro-micromechanical technique. Electrospinning is a technique used to produce micron to submicron diameter polymeric fibers. Electrospun PVDF web was also evaluated for the sensing properties by micromechanical test and by measurement electrical resistance. CNT composite was especially prepared for high volume contents, 50 vol% of reinforcement. Electrical contact resistivity on humidity sensing was a good indicator for monitoring as for multifunctional applications. Work of adhesion using contact angle measurement was studied to correlate acid-base surface energy between carbon fiber and CNF composites, and will study furher for interfacial adhesion force by micromechanical test.

  • PDF

Development of a Dedicated Algorithm for the Analysis of DC Electrical Outputs of Cantilevered Piezoelectric Vibration Energy Harvesters (외팔보 압전 진동 에너지 수확 장치의 직류 전기 출력 해석을 위한 전용 알고리즘 개발)

  • Kim, Jae-Eun;Kim, Yoon-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.9
    • /
    • pp.896-902
    • /
    • 2012
  • For most applications of the vibration energy harvesting technology as in wireless sensor networks for smart buildings and plants, the evaluation of DC output performance of vibration energy harvesters is typically required. However, there is no dedicated algorithm for the evaluation. The lack of a dedicated algorithm results from difficulties in the direct incorporation of nonlinear rectifying and regulating circuitry into finite element models of piezoelectric vibration energy harvesters. In this study, we develop a dedicated algorithm and present software based on it for the evaluation of not only AC but also DC electrical quantities. Here, an equivalent electrical circuit model is employed. The COMSOL multiphysics simulation tool is adopted for extracting equivalent electrical circuit parameters of a piezoelectric vibration energy harvester and MATLAB is used to make a graphical user interface. The AC voltage and power outputs calculated by the proposed algorithm under various conditions are compared with those by a traditional finite element analysis. The DC output voltage and power through a rectifier are obtained for varying values of smoothing capacitance and external resistance.

Functional switching of eukaryotic 2-Cys peroxiredoxins from peroxidases to molecular chaperones in response to oxidative stress

  • Jang, Ho-Hee;Lee, Sang-Yeol
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2005.11a
    • /
    • pp.40-64
    • /
    • 2005
  • Much biochemical information on peroxiredoxins (Prxs) has been reported but a genuine physiological function for these proteins has not been established. We show here that two cytosolic yeast Prxs, cPrxI and II, exist in a variety of forms that differ in their structure and molecular weight (MW) and that they can act both as a peroxidase and as a molecular chaperone. The peroxidase function predominates in the lower MW proteins, whereas the chaperone function is more significant in the higher MW complexes. Oxidative stress and heat shock exposure of yeasts causesthe protein structures of cPrxI and II to shift from low MW species to high MW complexes. This triggers a peroxidase-to-chaperone functional switch. These in vivo changes are primarily guided by the active peroxidase site residue, $Cys^{47}$, which serves as an efficient $'H_2O_2-sensor'$ in the cells. The chaperone function of the proteins enhances yeast resistance to heat shock.

  • PDF

Effect of SiO2 and Nb2O5 Buffer Layer on Optical Characteristics of ITO Thin Film

  • Kwon, Yong-Han;Jang, Gun-Eik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.1
    • /
    • pp.29-33
    • /
    • 2015
  • This paper presents the results of the optical characteristics of ITO thin film with different buffer layer thicknesses of $SiO_2$ and $Nb_2O_5$ for touch sensor application. $SiO_2$ and $Nb_2O_5$ buffer layers were deposited using RF magnetron sputtering equipment. The buffer layers were inserted between glass and ITO layers. In order to compare with the experimental results, the Essential Macleod Program (EMP) was adopted. Based on EMP simulation, the [$Nb_2O_5{\mid}SiO_2{\mid}ITO$] multi-layered thin film exhibited high transmittance of more than 85% in the visible region. The actual experimental results also showed transmittance of more than 85% in the visible region, indicating that the simulated results were well matched with the experimental results. The sheet resistance of ITO based film was about $340{\Omega}/sq$. The surface roughness maintained a relatively small value within the range of 0.1~0.4 nm when using the $Nb_2O_5$ and $SiO_2$ buffer layers.