• 제목/요약/키워드: Sensor resistance

Search Result 861, Processing Time 0.03 seconds

Characterization of Fiber Pull-out in Orthogonal Cutting of Glass fiber Reinforced Plastics

  • Park, Gi-Heung
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2003.10a
    • /
    • pp.113-117
    • /
    • 2003
  • The reliability of machined fiber reinforced composites (FRC) in high strength applications and the safety in using these components are often critically dependent upon the quality of surface produced by machining since the surface layer may drastically affect the strength and chemical resistance of the material [1,2,3,4]. Current study will discuss the characterization of fiber pull-out in orthogonal cutting of a fiber-matrix composite materials. A sparsely distributed idealized model composite material, namely a glass reinforced polyester (GFRP) was used as workpiece. Analysis method employs a force sensor and the signals from the sensor are processed using AR time series model. The experimental correlation between the fiber pull-out and the AR coefficients is examined first and effects of fiber orientation, cutting parameters and tool geometry on the fiber pull-out are also discussed.

  • PDF

A Study on the Sensorless Vector Control of IM using Adaptive Control (적응제어를 이용한 속도센서없는 유도전동기 벡터제어에 관한 연구)

  • Lee, Y.J.;Kim, H.J.;Oh, W.S.;Hong, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1196-1198
    • /
    • 1992
  • In field oriented control of Induction motors, speed sensor is required, which reduces the sturdiness of drive system and together with the expenditure of hardware for faultless transmission and processing of sensor signals it causes considerable expenses. These expensive sensors can be replaced by speed sensorless concept. And for good control, the knowledge of the rotor flux component of the rotor resistance are needs. Thus, this paper is based on a Extended Kalman Filter( EKF ) that estimates the state variables that are required for the control by only measuring the line voltages and currents of the machine. The rotor time constant and speed estimated by the EKF shows satisfactory agreement with the real values, with the simulation approaches.

  • PDF

Fabrication of Carbon Nanotube Strain Sensors (카본나노튜브 스트레인 센서 제작 기술)

  • Chang, Won-Seok;Song, Sun-Ah;Kim, Jae-Hyun;Han, Chang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.10
    • /
    • pp.773-777
    • /
    • 2009
  • In this study, the strain sensing characteristics of single-wall carbon nanotubes(SWCNTs) networks were investigated to develop a film sensor for strain sensing. The SWCNTs film are formed on flexible substrates of poly(ethylene terephthalate) (PET) using spray process. In this manner we could control the transparency and obtain excellent uniformity of the networked SWCNT film. The carbon nanotube film is isotropic due to randomly oriented bundles of SWCNTs. Using experimental results it is shown that there is a nearly linear change in resistance across the film when it is subjected to tensile stress. The results presented in this study indicate the potential of such films for high sensitive transparent strain sensors on macro scale.

A Study on the Tool Life Detection System in Cutting Process. (절삭가공중의 공구수명검출 시스템 개발에 관한 연구)

  • 김정두;최종순
    • Journal of the Korean Professional Engineers Association
    • /
    • v.21 no.4
    • /
    • pp.6-11
    • /
    • 1988
  • The study on the progress of automatic machining system has been active centering at the CNC machine tools recently to lead the applied production technology like unmaned machining to the practical level, and to make these application more efficient, they require detective method for tool wear and breakage while machining. In this study chiefly on turning, first derive cutting force about the tool surface by the cutting resistant sensor and with which change into electric signal and compare with the standards to make the tool life detection system to let know the tool life and study its application; the cutting resistance detected by the cutting resistant sensor has increased to the level of standards, the measuring system which can decide whether we change tools on the basis of comperative circuit is shown to be very reliable model for cutting tool life detection system.

  • PDF

The Growth Characteristics of ${\beta}\;-FeSi_2$ as IR-sensor Device for Detecting Pollution Material : The Usage of the Ferrocene-Plasma

  • Kim, Kyung-Soo;Jung, II-Hyun
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.2
    • /
    • pp.102-111
    • /
    • 2000
  • As IR-sensor for detecting pollution material, the iron silicide has a fit band gap, high physicochemical stability at high temperature and good acid resistance. The growing film was formed with the Fe-Si bond and the organic compound because plasma resolved the injected precursors into various active species. In the Raman scattering spectrum, the Fe-Si vibration mode showed at 250 {TEX}$cm^{-1}${/TEX}. The FT-IR peak indicated that the various organic compounds were deposited on the films. The iron silicide was epitaxially grown to β-phase by the high energy of plasma. The lattice structure of films had [220]/[202] and [115]. The thickness of the films increased with the flow rate of silane. But rf-power increased with decreasing the thickness. The optical gap energy and the band gap were shown about 3.8 eV and 1.182∼1.194 eV. The band gap linearly increased and the formula was below: {TEX}$E_g^{dir}${/TEX}= 8.611×{TEX}$10^{-3}N_{D}${/TEX}+1.1775

  • PDF

A Study on the Parameters and Characteristic of Induction Motor driven by Inverter (인버터로 구동되는 유도전동기의 정수 및 특성에 관한 연구)

  • 전내석;김종윤;오진석;김윤식
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.497-504
    • /
    • 2000
  • This paper presents a method for the equivalent-circuit parameters and torque characteristics calculation of squirrel-cage induction motors. The measurment of motor parameters were calculated by the stator resistance test, the blocked rotor test and no load test through T type equivalent-circuit method. Especially, this paper describes the test results obtained by using hall sensor and strain gage for the current and the torque characteristics of induction motors. 1(HP), three-phase squirrel cage induction motor has been used during the test and the parameters are compared with those obtained by the maker parameters of simulation results and experiment.

  • PDF

A basic study on the application of hydrogel membrane to a sensor for measuring large strain

  • Morikawa, Hirohisa;Hirai, Toshihiro;Sakurai, Masayuki;Nakazawa, Masaru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.952-956
    • /
    • 1989
  • We experimentally investigated the mechanical and electrical characteristics of the poly vinyl alcohol(PVA) hydrogel which have attracted special interest as a mechanochemical material, and the applicability of the hydrogel membrane to a sensor for measuring large strain. As a result, the PVA hydrogel could be regarded as a Hookean elastic material and was treated as an electric resistance which was proportional to the tensile strain within a linearly elastic range.

  • PDF

Construction of a Direct Current Magnetometer (직류 자력계의 제작)

  • Chang, Choong-Geun
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.9-15
    • /
    • 1996
  • In order to display magnetic signals obtained from a magneto-resistance sensor, a direct current magnetometer was designed and its circuit was constructed. The magnetic fields measured by the home-made magnetometer, which showed good functions of automatic ranging, analog output, and vector sensing, were well agreed with those by commercial MAG-01 magnetometer. The measurement range of the magnetometer was $1\;{\mu}T$ to 1.999 mT, the resolution was -132 dB within 1 Hz bandwidth and the measured magnetic fields could be displayed with $3{\cdot}1/2$-digit LED.

  • PDF

Fabriaction of bump bounded piezoresistive silicon accelerometer (범프 본딩된 압저항 실리콘 가속도센서의 제조)

  • 심준환;이상호;이종현
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.7
    • /
    • pp.30-36
    • /
    • 1997
  • Bump bonded piezoesistive silicon accelerometer was fabricated by the porous silicon micromachining and th eprocess technique of integrated circuit. The output voltage of the accelerometer fabricated on (111)-oreiented Si substrates with n/n$^{+}$n triple layers showed good linear characteristic of less than 1%. The measured sensitivity and the resonant frequency was about 743 .mu.V/g and 2.04 kHz, respectively. And the transverse sensitivity of 5.2% was measured from the accelerometer. Also, to investigate an influence on the output characteristics of the sensor due to bump bonding, the values of the piezoresistors were measured through thermal-cycling test in the temperature variation form -50 to 120.deg. C. Then, there was 0.014% resistance changes about 3.61 k.ohm., so sthe output charcteristics of the sensor was less affected by bump bonding.g.

  • PDF

Fabrication of a Superhydrophobic Water-Repellent Mesh for Underwater Sensors

  • An, Taechang
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.100-104
    • /
    • 2013
  • A superhydrophobic mesh is a unique structure that blocks water, while allowing gases, sound waves, and energy to pass through the holes in the mesh. This mesh is used in various devices, such as gas- and energy-permeable waterproof membranes for underwater sensors and electronic devices. However, it is difficult to fabricate micro- and nano-structures on three-dimensional surfaces, such as the cylindrical surface of a wire mesh. In this research, we successfully produced a superhydrophobic water-repellent mesh with a high contact angle (> $150^{\circ}$) for nanofibrous structures. Conducting polymer (CP) composite nanofibers were evenly coated on a stainless steel mesh surface, to create a superhydrophobic mesh with a pore size of $100{\mu}m$. The nanofiber structure could be controlled by the deposition time. As the deposition time increased, a high-density, hierarchical nanofiber structure was deposited on the mesh. The mesh surface was then coated with Teflon, to reduce the surface energy. The fabricated mesh had a static water contact angle of $163^{\circ}$, and a water-pressure resistance of 1.92 kPa.