• Title/Summary/Keyword: Sensor nodes

Search Result 2,025, Processing Time 0.025 seconds

Applying a sensor energy supply communication scheme to big data opportunistic networks

  • CHEN, Zhigang;WU, Jia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2029-2046
    • /
    • 2016
  • Energy consumption is an important index in mobile ad hoc networks. Data packet transmission increases among nodes, particularly in big data communication. However, nodes may be unable to transmit data packets because of energy over-consumption. Consequently, information may be lost and network communication may block. While opportunistic network is a kind of mobile ad hoc networks, researchers do not focus on energy consumption in opportunistic network communication. This study proposed an effective sensor energy supply scheme that can be applied in opportunistic networks. This scheme considers nodes sensor requests and communication model. In this scheme, nodes do not only accomplish energy supply in communication, but also extend communication time in opportunistic networks. Compared with the Spray and Wait algorithm and the Binary Spray and Wait algorithm in simulations, the proposed scheme extends communication time, increases data packet transmission, and accomplishes energy supply among nodes.

Efficient Verifiable Top-k Queries in Two-tiered Wireless Sensor Networks

  • Dai, Hua;Yang, Geng;Huang, Haiping;Xiao, Fu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.6
    • /
    • pp.2111-2131
    • /
    • 2015
  • Tiered wireless sensor network is a network model of flexibility and robustness, which consists of the traditional resource-limited sensor nodes and the resource-abundant storage nodes. In such architecture, collected data from the sensor nodes are periodically submitted to the nearby storage nodes for archive purpose. When a query is requested, storage nodes also process the query and return qualified data as the result to the base station. The role of the storage nodes leads to an attack prone situation and leaves them more vulnerable in a hostile environment. If any of them is compromised, fake data may be injected into and/or qualified data may be discarded. And the base station would receive incorrect answers incurring malfunction to applications. In this paper, an efficient verifiable top-k query processing scheme called EVTQ is proposed, which is capable of verifying the authentication and completeness of the results. Collected data items with the embedded information of ordering and adjacent relationship through a hashed message authentication coding function, which serves as a validation code, are submitted from the sensor nodes to the storage nodes. Any injected or incomplete data in the returned result from a corresponded storage node is detected by the validation code at the base station. For saving communication cost, two optimized solutions that fuse and compress validation codes are presented. Experiments on communication cost show the proposed method is more efficiency than previous works.

Asynchronous Message Delivery among Mobile Sensor Nodes in Stationary Sensor Node based Real-Time Location Systems (고정형 센서 노드 기준 위치인식 시스템에서 이동형 센서 노드 간 비동기 메시지 전송방법)

  • Kim, Woo-Jung;Jeong, Seol-Young;Kim, Tae-Hyon;Kang, Soon-Ju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.2B
    • /
    • pp.148-158
    • /
    • 2011
  • Stationary nodes and mobile nodes co-exist wireless sensor network(WSN) can provide variety of new services. The stationary sensor node acts not only the gathering the environmental sensing data but also a access point to bidirectional communication with numerous mobile sensor nodes(mobile node), and the mobile sensor nodes are installed inside mobile objects and identify the location in real-time and monitor the internal status of the object. However, only using the legacy WSN protocol, it is impossible to set up the stable network due to the several reasons caused by the free-mobility of the mobile nodes. In this paper, we suggest three methods to increase the hit-ratio of the asynchronous message delivery(AMD) among mobile nodes. We verified the performance of the suggested methods under the stationary-mobile co-existed WSN testbed.

An Indirect Localization Scheme for Low- Density Sensor Nodes in Wireless Sensor Networks (무선 센서 네트워크에서 저밀도 센서 노드에 대한 간접 위치 추정 알고리즘)

  • Jung, Young-Seok;Wu, Mary;Kim, Chong-Gun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.1
    • /
    • pp.32-38
    • /
    • 2012
  • Each sensor node can know its location in several ways, if the node process the information based on its geographical position in sensor networks. In the localization scheme using GPS, there could be nodes that don't know their locations because the scheme requires line of sight to radio wave. Moreover, this scheme is high costly and consumes a lot of power. The localization scheme without GPS uses a sophisticated mathematical algorithm estimating location of sensor nodes that may be inaccurate. AHLoS(Ad Hoc Localization System) is a hybrid scheme using both GPS and location estimation algorithm. In AHLoS, the GPS node, which can receive its location from GPS, broadcasts its location to adjacent normal nodes which are not GPS devices. Normal nodes can estimate their location by using iterative triangulation algorithms if they receive at least three beacons which contain the position informations of neighbor nodes. But, there are some cases that a normal node receives less than two beacons by geographical conditions, network density, movements of nodes in sensor networks. We propose an indirect localization scheme for low-density sensor nodes which are difficult to receive directly at least three beacons from GPS nodes in wireless network.

Modeling and Design of a Distributed Detection System Based on Active Sonar Sensor Networks (능동 소나망 분산탐지 체계의 모델링 및 설계)

  • Choi, Won-Yong;Kim, Song-Geun;Hong, Sun-Mog
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.123-131
    • /
    • 2011
  • In this paper, modeling and design of a distributed detection system are considered for an active sonar sensor network. The sensor network has a parallel configuration and it consists of a fusion center and a set of receiver nodes. A system with two receiver nodes is considered to investigate a theoretical aspect of design. To be specific, AND rule and OR rule are considered as the fusion rules of the sensor network. For the fusion rules, it is shown that a threshold rule of each sensor node has uniformly most powerful properties. Optimum threshold for each sensor is obtained that maximizes the probability of detection given probability of false alarm. Numerical experiments were also performed to investigate the detection characteristics of a distributed detection system with multiple sensor nodes. The experimental results show how signal strength, false alarm probability, and the distance between nodes in a sensor field affect the system detection performances.

Self Organization of Sensor Networks for Energy-Efficient Border Coverage

  • Watfa, Mohamed K.;Commuri, Sesh
    • Journal of Communications and Networks
    • /
    • v.11 no.1
    • /
    • pp.57-71
    • /
    • 2009
  • Networking together hundreds or thousands of cheap sensor nodes allows users to accurately monitor a remote environment by intelligently combining the data from the individual nodes. As sensor nodes are typically battery operated, it is important to efficiently use the limited energy of the nodes to extend the lifetime of the wireless sensor network (WSN). One of the fundamental issues in WSNs is the coverage problem. In this paper, the border coverage problem in WSNs is rigorously analyzed. Most existing results related to the coverage problem in wireless sensor networks focused on planar networks; however, three dimensional (3D) modeling of the sensor network would reflect more accurately real-life situations. Unlike previous works in this area, we provide distributed algorithms that allow the selection and activation of an optimal border cover for both 2D and 3D regions of interest. We also provide self-healing algorithms as an optimization to our border coverage algorithms which allow the sensor network to adaptively reconfigure and repair itself in order to improve its own performance. Border coverage is crucial for optimizing sensor placement for intrusion detection and a number of other practical applications.

Autonomous Deployment in Mobile Sensor Systems

  • Ghim, Hojin;Kim, Dongwook;Kim, Namgi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.9
    • /
    • pp.2173-2193
    • /
    • 2013
  • In order to reduce the distribution cost of sensor nodes, a mobile sensor deployment has been proposed. The mobile sensor deployment can be solved by finding the optimal layout and planning the movement of sensor nodes with minimum energy consumption. However, previous studies have not sufficiently addressed these issues with an efficient way. Therefore, we propose a new deployment approach satisfying these features, namely a tree-based approach. In the tree-based approach, we propose three matching schemes. These matching schemes match each sensor node to a vertex in a rake tree, which can be trivially transformed to the target layout. In our experiments, the tree-based approach successfully deploys the sensor nodes in the optimal layout and consumes less energy than previous works.

Mutual Authentication Mechanism for Secure Group Communications in Sensor Network (센서 네트워크에서의 안전한 그룹통신을 위한 상호 인증 기법)

  • Ko, Hye-Young;Doh, In-Shil;Chae, Ki-Joon
    • The KIPS Transactions:PartC
    • /
    • v.17C no.6
    • /
    • pp.441-450
    • /
    • 2010
  • Recently, a lot of interest is increased in sensor network which gathers various data through many sensor nodes deployed in wired and wireless network environment. However, because of the limitation in memory, computation, and energy of the sensor nodes, security problem is very important issue. In sensor network, not only the security problem, but also computing power should be seriously considered. In this paper, considering these characteristics, we make the sensor network consist of normal sensor nodes and clusterheaders with enough space and computing power, and propose a group key rekeying scheme adopting PCGR(Predistribution and local Collaborationbased Group Rekeying) for secure group communication. In our proposal, we enhance the security by minimizing the risk to safety of the entire network through verifying the new key value from clusterheader by sensor nodes. That is, to update the group keys, clusterheaders confirm sensor nodes through verifying the information from sensor nodes and send the new group keys back to authentic member nodes. The group keys sent back by the clusterheaders are verified again by sensor nodes. Through this mutual authentication, we can check if clusterheaders are compromised or not. Qualnet simulation result shows that our scheme not only guarantees secure group key rekeying but also decreasesstorage and communication overhead.

Efficient and Secure Routing Protocol forWireless Sensor Networks through SNR Based Dynamic Clustering Mechanisms

  • Ganesh, Subramanian;Amutha, Ramachandran
    • Journal of Communications and Networks
    • /
    • v.15 no.4
    • /
    • pp.422-429
    • /
    • 2013
  • Advances in wireless sensor network (WSN) technology have enabled small and low-cost sensors with the capability of sensing various types of physical and environmental conditions, data processing, and wireless communication. In the WSN, the sensor nodes have a limited transmission range and their processing and storage capabilities as well as their energy resources are limited. A triple umpiring system has already been proved for its better performance in WSNs. The clustering technique is effective in prolonging the lifetime of the WSN. In this study, we have modified the ad-hoc on demand distance vector routing by incorporating signal-to-noise ratio (SNR) based dynamic clustering. The proposed scheme, which is an efficient and secure routing protocol for wireless sensor networks through SNR-based dynamic clustering (ESRPSDC) mechanisms, can partition the nodes into clusters and select the cluster head (CH) among the nodes based on the energy, and non CH nodes join with a specific CH based on the SNR values. Error recovery has been implemented during the inter-cluster routing in order to avoid end-to-end error recovery. Security has been achieved by isolating the malicious nodes using sink-based routing pattern analysis. Extensive investigation studies using a global mobile simulator have shown that this hybrid ESRP significantly improves the energy efficiency and packet reception rate as compared with the SNR unaware routing algorithms such as the low energy aware adaptive clustering hierarchy and power efficient gathering in sensor information systems.

Clustering Methods for Cluster Uniformity in Wireless Sensor Networks (무선센서 네트워크에서 클러스터 균일화를 위한 클러스터링 방법)

  • Joong-Ho Lee
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.679-682
    • /
    • 2023
  • In wireless sensor networks, communication failure between sensor nodes causes continuous connection attempts, which results in a large power loss. In this paper, an appropriate distance between the CH(Cluster Head) node and the communicating sensor nodes is limited so that a group of clusters of appropriate size is formed on a two-dimensional plane. To equalize the cluster size, sensor nodes in the shortest distance communicate with each other to form member nodes, and clusters are formed by gathering nearby nodes. Based on the proposed cluster uniformity algorithm, the improvement rate of cluster uniformity is shown by simulation results. The proposed method can improve the cluster uniformity of the network by about 30%.