• Title/Summary/Keyword: Sensor nodes

Search Result 2,025, Processing Time 0.052 seconds

IIoTBC: A Lightweight Block Cipher for Industrial IoT Security

  • Juanli, Kuang;Ying, Guo;Lang, Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.1
    • /
    • pp.97-119
    • /
    • 2023
  • The number of industrial Internet of Things (IoT) users is increasing rapidly. Lightweight block ciphers have started to be used to protect the privacy of users. Hardware-oriented security design should fully consider the use of fewer hardware devices when the function is fully realized. Thus, this paper designs a lightweight block cipher IIoTBC for industrial IoT security. IIoTBC system structure is variable and flexibly adapts to nodes with different security requirements. This paper proposes a 4×4 S-box that achieves a good balance between area overhead and cryptographic properties. In addition, this paper proposes a preprocessing method for 4×4 S-box logic gate expressions, which makes it easier to obtain better area, running time, and power data in ASIC implementation. Applying it to 14 classic lightweight block cipher S-boxes, the results show that is feasible. A series of performance tests and security evaluations were performed on the IIoTBC. As shown by experiments and data comparisons, IIoTBC is compact and secure in industrial IoT sensor nodes. Finally, IIoTBC has been implemented on a temperature state acquisition platform to simulate encrypted transmission of temperature in an industrial environment.

Entropy based Resource Allocation Scheme for Tactical Wireless Sensor Networks (전술 무선 센서 네트워크를 위한 엔트로피 기반 자원할당 기법)

  • Lee, Jongkwan;Lee, Minwoo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.220-222
    • /
    • 2021
  • In this paper, we propose a resource allocation scheme based on entropy for tactical wireless networks. In a tactical situation, the sensing nodes that are located randomly provide transmitted data values depending on environmental conditions. Since they share wireless resources, nodes providing valuable data compared to others need to have more resources. The proposed scheme evaluates the value of received data by a sink node. Based on the results, the sink node reallocates resources to sensing nodes. Through various experiments, we verified the proposed scheme is superior to the fixed allocation scheme.

  • PDF

Location Determination and Measured Data Analysis of a Shipboard Indoor Signal Propagation Characteristics Based on Signature Sequence (서명 수열기반 선내 전파 전달특성 측정 위치선정 방안 및 측정 데이터 분석)

  • Kim, Jeong-Ho;Lee, Seong-Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.1
    • /
    • pp.198-201
    • /
    • 2015
  • The prompt and accurate location determination of the nodes of the wireless indoor shipboard networks is crucial to forming the stable wireless shipboard sensor networks. To this end in this paper it can be achieved through the measurement of the bi-directional channel qualities among the nodes after the locations of the sensor nodes temporarily placed. For the 1st stage the piconet-type sensor networks are considered to measure the channel qualities between a specific node and the cluster node which is the master node. After finishing the 1st stage measurement the nodes needing the relay nodes are selected and the measurement action goes into the 2nd stage. In the 2nd stage the measurement between a candidate relay node and the node needing a relay node starts to begin. After the 2nd stage the relay nodes to connect to the cluster node are fixed and the information delivery paths between a node and the cluster head are established. In this paper the measurement results in the realistic environment are gathered and analysed to show that the measurement procedure can be applied in the wireless indoor shipboard networks.

A Locating Scheme for Moving Objects Based on IEEE 802.15.4a (IEEE 802.15.4a에 기반한 이동체 위치 인식 기술)

  • Han, Young-Kou;Park, Jun-Seok;Seong, Yeong-Rak;Oh, Ha-Ryoung
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.8 no.3
    • /
    • pp.132-137
    • /
    • 2009
  • In this paper, a position recognition system is designed, implemented, and tested using IEEE 802.15.4a PHY (CSS) hardware and Tiny OS environment. The system is designed with extensibility and flexibility. The system consists of five kinds of nodes which have different functions from each other. Three communication channels are used for collision avoidance. In each cell, an arbiter node is used to minimize message collisions. The proposed arbitration protocol is designed to support mobility of arbitrary target nodes. Target nodes calculates their locations with communications to four location reference nodes which are placed on the comers of each cell.

  • PDF

Research on the Energy Hole Problem Based on Non-uniform Node Distribution for Wireless Sensor Networks

  • Liu, Tang;Peng, Jian;Wang, Xiao-Fen;Yang, Jin;Guo, Bing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2017-2036
    • /
    • 2012
  • Based on the current solutions to the problem of energy hole, this paper proposed a nonuniform node distribution clustering algorithm, NNDC. Firstly, we divide the network into rings, and then have an analysis and calculation on nodes' energy consumption in each ring of the network when clustering algorithm is applied to collect data. We also put forward a scheme of nonuniform node distribution on the basis of the proportion of nodes' energy consumption in each ring, and change nodes' active/hibernating states under density control mechanism when network coverage is guaranteed. Simulation shows NNDC algorithm can satisfyingly balance nodes' energy consumption and effectively avoid the problem of energy hole.

Speed Optimized Implementation of HUMMINGBIRD Cryptography for Sensor Network

  • Seo, Hwa-Jeong;Kim, Ho-Won
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.6
    • /
    • pp.683-688
    • /
    • 2011
  • The wireless sensor network (WSN) is well known for an enabling technology for the ubiquitous environment such as real-time surveillance system, habitat monitoring, home automation and healthcare applications. However, the WSN featuring wireless communication through air, a resource constraints device and irregular network topology, is threatened by malicious nodes such as eavesdropping, forgery, illegal modification or denial of services. For this reason, security in the WSN is key factor for utilizing the sensor network into the commercial way. There is a series of symmetric cryptography proposed by laboratory or industry for a long time. Among of them, recently proposed HUMMINGBIRD algorithm, motivated by the design of the well-known Enigma machine, is much more suitable to resource constrained devices, including smart card, sensor node and RFID tags in terms of computational complexity and block size. It also provides resistance to the most common attacks such as linear and differential cryptanalysis. In this paper, we implements ultra-lightweight cryptography, HUMMINGBIRD algorithm into the resource constrained device, sensor node as a perfectly customized design of sensor node.

Energy-Aware System Lifetime Maximization Algorithm in Multi-Hop Sensor Network (멀티홉 센서 네트워크에서 에너지 상황을 고려한 시스템 수명 최대화 알고리즘)

  • Kim, Tae-Rim;Kim, Bum-Su;Park, Hwa-Kyu
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.6
    • /
    • pp.339-345
    • /
    • 2013
  • This paper addresses the system lifetime maximization algorithm in multi-hop sensor network system. A multi-hop sensor network consists of many battery-driven sensor nodes that collaborate with each other to gather, process, and communicate information using wireless communications. As sensor-driven applications become increasingly integrated into our lives, we propose a energy-aware scheme where each sensor node transmits informative data with adaptive data rate to minimize system energy consumption. We show the optimal data rate to maximize the system lifetime in terms of remaining system energy. Furthermore, the proposed algorithm experimentally shows longer system lifetime in comparison with greedy algorithm.

The Efficient Computation of Node Position on Mobile Sensor Network (모바일 센서 네트워크에서 효율적인 노드 위치 결정)

  • Park, Na-Yeon;Son, Cheol-Su;Kim, Won-Jung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.4
    • /
    • pp.391-398
    • /
    • 2010
  • Because mobile sensor network is different with the existing wireless sensor network with fixed nodes, it is more difficult to implement a positioning algorithm in mobile sensor network than in mobile sensor network. In case of fast moving node, a positioning algorithm may be not completed in a given time. In this paper we present the positioning algorithm that improves performance and can complete a computation in time on mobile sensor network.

Bayesian Statistical Modeling of System Energy Saving Effectiveness for MAC Protocols of Wireless Sensor Networks: The Case of Non-Informative Prior Knowledge

  • Kim, Myong-Hee;Park, Man-Gon
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.6
    • /
    • pp.890-900
    • /
    • 2010
  • The Bayesian networks methods provide an efficient tool for performing information fusion and decision making under conditions of uncertainty. This paper proposes Bayes estimators for the system effectiveness in energy saving of the wireless sensor networks by use of the Bayesian method under the non-informative prior knowledge about means of active and sleep times based on time frames of sensor nodes in a wireless sensor network. And then, we conduct a case study on some Bayesian estimation models for the system energy saving effectiveness of a wireless sensor network, and evaluate and compare the performance of proposed Bayesian estimates of the system effectiveness in energy saving of the wireless sensor network. In the case study, we have recognized that the proposed Bayesian system energy saving effectiveness estimators are excellent to adapt in evaluation of energy efficiency using non-informative prior knowledge from previous experience with robustness according to given values of parameters.

Routing Techniques for Data Aggregation in Sensor Networks

  • Kim, Jeong-Joon
    • Journal of Information Processing Systems
    • /
    • v.14 no.2
    • /
    • pp.396-417
    • /
    • 2018
  • GR-tree and query aggregation techniques have been proposed for spatial query processing in conventional spatial query processing for wireless sensor networks. Although these spatial query processing techniques consider spatial query optimization, time query optimization is not taken into consideration. The index reorganization cost and communication cost for the parent sensor nodes increase the energy consumption that is required to ensure the most efficient operation in the wireless sensor node. This paper proposes itinerary-based R-tree (IR-tree) for more efficient spatial-temporal query processing in wireless sensor networks. This paper analyzes the performance of previous studies and IR-tree, which are the conventional spatial query processing techniques, with regard to the accuracy, energy consumption, and query processing time of the query results using the wireless sensor data with Uniform, Gauss, and Skew distributions. This paper proves the superiority of the proposed IR-tree-based space-time indexing.