• Title/Summary/Keyword: Sensor nodes

Search Result 2,025, Processing Time 0.033 seconds

Sensor Nodes Selecting Schemes-based Distributed Target Tracking Filter for Underwater Wireless Sensor Networks (센서노드 선정기법 기반 수중 무선센서망 분산형 표적추적필터)

  • Yu, Chang Ho;Choi, Jae Weon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.8
    • /
    • pp.694-701
    • /
    • 2013
  • This paper deals with the problem of accurately tracking a single target moving through UWSNs (Underwater Wireless Sensor Networks) by employing underwater acoustic sensors. This paper addresses the issues of estimating the states of the target, and improving energy efficiency by applying a Kalman filter in a distributed architecture. Each underwater wireless sensor nodes composing the UWSNs is battery-powered, so the energy conservation problem is a critical issue. This paper provides an algorithm which increases the energy efficiency of each sensor node through WuS (Waked-up/Sleeping) and VM (Valid Measurement) selecting schemes. Simulation results illustrate the performance of the distributed tracking filter.

Low-power Environmental Monitoring System for ZigBee Wireless Sensor Network

  • Alhmiedat, Tareq
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4781-4803
    • /
    • 2017
  • Environmental monitoring systems using Wireless Sensor Networks (WSNs) face the challenge of high power consumption, due to the high levels of multi-hop data communication involved. In order to overcome the issue of fast energy depletion, a proof-of-concept implementation proves that adopting a clustering algorithm in environmental monitoring applications will significantly reduce the total power consumption for environment sensor nodes. In this paper, an energy-efficient WSN-based environmental monitoring system is proposed and implemented, using eight sensor nodes deployed over an area of $1km^2$, which took place in the city of Tabuk in Saudi Arabia. The effectiveness of the proposed environmental monitoring system has been demonstrated through adopting a number of real experimental studies.

An efficient spatio-temporal index for spatio-temporal query in wireless sensor networks

  • Lee, Donhee;Yoon, Kyoungro
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4908-4928
    • /
    • 2017
  • Recent research into wireless sensor network (WSN)-related technology that senses various data has recognized the need for spatio-temporal queries for searching necessary data from wireless sensor nodes. Answers to the queries are transmitted from sensor nodes, and for the efficient transmission of the sensed data to the application server, research on index processing methods that increase accuracy while reducing the energy consumption in the node and minimizing query delays has been conducted extensively. Previous research has emphasized the importance of accuracy and energy efficiency of the sensor node's routing process. In this study, we propose an itinerary-based R-tree (IR-tree) to solve the existing problems of spatial query processing methods such as efficient processing and expansion of the query to the spatio-temporal domain.

An Integrated Approach for Position Estimation using RSSI in Wireless Sensor Network

  • Pu, Chuan-Chin;Chung, Wan-Young
    • Journal of Ubiquitous Convergence Technology
    • /
    • v.2 no.2
    • /
    • pp.78-87
    • /
    • 2008
  • Received signal strength indicator (RSSI) is used as one of the ranging techniques to locate dynamic sensor nodes in wireless sensor network. Before it can be used for position estimation, RSSI values must be converted to distances using path loss model. These distances among sensor nodes are combined using trilateration method to find position. This paper presents an idea which attempts to integrate both path loss model and trilateration as one algorithm without going through RSSI-distance conversion. This means it is not simply formulas combination but a whole new model was developed. Several advantages were found after integration: it is able to reduce processing load, and ensure that all values do not exceed the maximum range of 16-bit signed or unsigned numbers due to antilog operation in path loss model. The results also show that this method is able to reduce estimation error while inaccurate environmental parameters are used for RSSI-distance conversion.

  • PDF

Vibration-Based Monitoring of Stay-Cable Force Using Wireless Piezoelectric-Based Strain Sensor Nodes

  • Nguyen, Khac-Duy;Kim, Jeong-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.6
    • /
    • pp.669-677
    • /
    • 2012
  • This study presents a method to monitor cable force using wireless sensor nodes and piezoelectric sensors. The following approaches are carried out to achieve the objective. Firstly, the principle of piezoelectric materials (e.g., PZT) as strain sensors is reviewed. A cable force estimation method using dynamic features of cables measured by piezoelectric materials is presented. Secondly, the design of an automated cable force monitoring system using the data acquisition sensor-node Imote2/SHM-DAQ is described. The sensor node is originally developed by University of Illinois at Urbana-Champaign and is adopted in this study to monitor strain-induced voltage from PZT sensors. The advantages of the system are cheap, and eligible for wireless communication and automated operation. Finally, the feasibility of the proposed monitoring system is evaluated on a lab-scaled cable.

An Energy and Coverage Efficient Clustering Method for Wireless Sensor Network (무선 센서 네트워크를 위한 효율적인 에너지와 커버리지 클러스터링 방법)

  • Gong, Ji;Zhang, Kai;Kim, Seung-Hae;Cho, Gi-Hwan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06a
    • /
    • pp.261-262
    • /
    • 2008
  • Due to technological advances, the manufacturing of small and low cost of sensors becomes technically and economically feasible. In recent years, an increasing interest in using Wireless Sensor Network (WSN) in various applications, including large scale environment monitoring, battle field surveillance, security management and location tracking. In these applications, hundreds of sensor nodes are left to be unattended to report monitored data to users. Since sensor nodes are placed randomly and sometimes are deployed in underwater. It is impossible to replace batteries often when batteries run out. Therefore, reducing energy consumption is the most important design consideration for sensor networks.

  • PDF

Secure Mobile Query in Wireless Sensor Networks (무선 센서 네트워크에서의 안전한 모바일 쿼리 프로토콜)

  • Lim, Chae Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.6
    • /
    • pp.1191-1197
    • /
    • 2013
  • In large-scale distributed sensor networks, it is often recommended to employ mobile sinks, instead of fixed base stations, for data collection to prolong network lifetime and enhance security. Mobile sinks may also be used, e.g., for network repair, identification and isolation of compromised sensor nodes and localized reprogramming, etc. In such circumstances, mobile sinks should be able to securely interact with neighbor sensor nodes while traversing the network. This paper presents a secure and efficient mobile query protocol that can be used for such purposes.

The Smart Management of Applications Using Fuzzy Logic in Wireless Sensor Networks (무선 네트워크 환경에서 퍼지 로직을 이용한 어플리케이션의 지능적 관리 방안 연구)

  • Lim, Jae-Hoon;Lee, Min-Woo;Kim, Min-Ki;Park, Gwi-Tae
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.276-278
    • /
    • 2009
  • In this paper, we propose the smart management technique of applications using fuzzy logic in wireless sensor networks. We consider the intelligent action compared to the classical action that can only be controlled by on and off. The vagueness depends on the places of the sensor nodes, human's character and emotion. In order to control them with the smartness, the proposed technique considers the better performance of applications in wireless sensor networks. We performed the simulations and implementations on sensor nodes and checked out our ideas. The simulation results show that the proposed technique is more reasonable than the classical approach.

  • PDF

Energy Harvesting Framework for Mobile Sensor Networks with Remote Energy Stations (원격 에너지 저장소를 가진 이동 센서 네트워크를 위한 에너지 수확 체계)

  • Kim, Seong-Woo;Lee, Jong-Min;Kwon, Sun-Gak
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.12
    • /
    • pp.1184-1191
    • /
    • 2009
  • Energy harvesting from environment can make the energy constrained systems such as sensor networks to sustain their lifetimes. However, environmental energy is highly variable with time, location, and other factors. Unlike the existing solutions, we solved this problem by allowing the sensor nodes with mobilizer to move in search of energy and recharge from remote energy station. In this paper we present and analyze a new harvesting aware framework for mobile sensor networks with remote energy station. The framework consists of energy model, motion control system and data transfer protocol. Among them, the objective of our data transfer protocol is to route a data packet geographically towards the target region and at the same time balance the residual energy and the link connectivity on nodes with energy harvesting. Our results along with simulation can be used for further studies and provide certain guideline for realistic development of such systems.

Energy-efficient data transmission technique for wireless sensor networks based on DSC and virtual MIMO

  • Singh, Manish Kumar;Amin, Syed Intekhab
    • ETRI Journal
    • /
    • v.42 no.3
    • /
    • pp.341-350
    • /
    • 2020
  • In a wireless sensor network (WSN), the data transmission technique based on the cooperative multiple-input multiple-output (CMIMO) scheme reduces the energy consumption of sensor nodes quite effectively by utilizing the space-time block coding scheme. However, in networks with high node density, the scheme is ineffective due to the high degree of correlated data. Therefore, to enhance the energy efficiency in high node density WSNs, we implemented the distributed source coding (DSC) with the virtual multiple-input multiple-output (MIMO) data transmission technique in the WSNs. The DSC-MIMO first compresses redundant source data using the DSC and then sends it to a virtual MIMO link. The results reveal that, in the DSC-MIMO scheme, energy consumption is lower than that in the CMIMO technique; it is also lower in the DSC single-input single-output (SISO) scheme, compared to that in the SISO technique at various code rates, compression rates, and training overhead factors. The results also indicate that the energy consumption per bit is directly proportional to the velocity and training overhead factor in all the energy saving schemes.